COMMERCE @\

Schemafor Object-Oriented XML 2.0

Authors:
Andrew Davidson
Matthew Fuchs
Mette Hedin
Mudita Jain
Jari Koistinen
ChrisLloyd
Murray Maloney
Kelly Schwartzhof

Satus of thisdocument

This document represents version 2.0 of the Schema for Object-Oriented XML (SOX). It replaces the previous
version of the SOX language specification and represents the current, implemented version of the language.

Comments on this document should be sent to brad.snyder @commerceone.com.

1 Abstract

This document describes SOX 2.0, the second version of the Schema for Object-Oriented XML. SOX isa
schema language (or metagrammar) for defining the syntactic structure and partial semantics of XML document
types. Assuch, SOX isan aternativeto XML DTDs and can be used to define the same class of document types
(with the exception of external parsed entities). However, SOX extends the language of DTDs by supporting:

1. Anextensive (and extensible) set of datatypes

2. Inheritance among element types

3. Namespaces

4. Polymorphic content

5. Embedded documentation

6. Featuresto enable robust distributed schema management.

All of these features are supported with strong type-checking and validation. A SOX schemaisalso avalid
XML instance according to the SOX DTD, enabling the application of XML content management tools to
schema management.

SOX wasinitially developed to support the development of large-scale, distributed electronic commerce applica
tions, but it is a general-purpose schema language for the whol e range of applications of markup. As compared
to XML DTDs, SOX dramatically decreases the complexity of supporting interoperation among heterogenous
applications by facilitating software mapping of XML data structures, expressing domain abstractions and com-
mon relationships directly and explicitly, enabling reuse at the document design and the application program-
ming levels, and supporting the generation of common application components.

Although SOX 2.0 retains many of the features of SOX 1.0, it represents an additional year of actual implemen-
tation experience. Commerce One has aworking implementation of thislanguage and will be releasing products
based onit. Our goalsin releasing this second version are two-fold:

1. Ensurethat the public record accurately reflects the evolution of SOX. Members of the community wishing
to understand SOX, build tools using SOX, or interoperate with SOX applications, need access to the current
version of the language.

2. Expose some of thefruits of our implementation experience to the general community, particularly to assistin
the ongoing work at the W3C to develop an official XML Schema language.

From the markup world, the SOX proposal isinformed by the XML 1.0 specification as well asthe XML-Data
submission and Document Content Description submission. However, many of SOX's requirements come from
the distributed computing world and the devel opment of SOX has been heavily influenced by the Java program-
ming language.

2 Soxtype processing instruction

Asa SOX document is not defined by aDTD, the native XML 1.0 Doctype declaration is not appropriate for a
document instance to declare SOX Schema information (note that this may not continue to be true once the W3C
Schema WG defines an official mechanism). Therefore we have created the soxtype declaration, which mimics
the XML doctype declaration, but using a processing instruction. The soxtype declaration must be the first state-
ment in adocument following the optional XML declaration and declares that the default namespace of this doc-
ument isthat of the given SOX Schema, just as a doctype declaration declares that an XML 1.0 document
conforms to the given Document Type Declaration (DTD). The soxtype declaration is not currently intended to
coexist in the same document with a doctype declaration, but there is no particul ar restriction prohibiting this.

The soxtype declaration includes three parts:

3. ThePI target, which is soxtype.
4. The uri specifying a schemato be the default namespace of the instance.

An exampl e declaration would look like:

<?soxtype urn: x-comrer ceone: docunent : com comrer ceone: schenal. sox$1. 07>

Import processing instruction

where the schema definition islocated through resolving the urn ur n: x- comrer ceone: docu-
nment : com comer ceone: schemal: schemal. sox$1. 0. Thepart followingthe“$” givesthe version
number.

A small sample document would look like:

<?soxtype urn:x-comrer ceone: docurent : com comrer ceone: schenal. sox$1. 0?>
<Root >

<Body/ >
</ Root >

The root element of the instance is not required to belong to the default namespace. This will be further elabo-
rated in the discussion of thei nport Pl below.

3 Import processing instruction

With the arrival of namespaces and polymorphism, it is no longer necessarily possible to indicate asingle
schema to which the entire instance conforms. Nevertheless, we require a mechanism to indicate a set of sche-
mata containing definitions for all the element and datatypes appearing in an instance. Thisfunction is handled
by thei mport processing instruction. Thei nport Pl contains one argument, an absolute URI indicating a
schema.

An example import Pl would look like:

<?i nport urn: x-conmer ceone: docunent : com conmer ceone: schenmal. sox$1. 07>

where the schema definition is located through resolving the urn ur n: x- comrer ceone: docu-
nment : com conmmer ceone: schemal. sox$1. 0. Thepart following the“$” gives the version number.

A small sample document would look like:

<?soxt ype urn: x-conmmer ceone: docunent : com conmer ceone: schenal. sox$1. 0?>
<?i nport urn: x-conmer ceone: docunent : com commer ceone: schena2. sox$1l. 07>
<Root
<s2: Body
xm ns: s2="ur n: x- comrer ceone: docunent : com conmer ceone: schenma2. sox$1. 0"/
>
</ Root >

In the following, the namespace attributes on Root overrides the default namespace declared in the soxtype PI,
and Body isassumed to also beinschema?2. sox.

<?soxtype urn:x-comrer ceone: docurent : com comrer ceone: schenal. sox$1. 0?>

<?i mport urn:x-comrer ceone: docunent : com commer ceone: schema2. sox$1. 07>

<Root xm ns="urn: x- comrer ceone: docunent : com conmer ceone: schema2. sox$. 0" >
<Body/ >

</ Root >

3.1 Validity constraint

It is not necessary that for every element type appearing in the instance there be a corresponding i mport or
soxt ype processing instruction. Nevertheless, all schema information must be available before processing of
the root element begins. We can define a transitive closure property over schemata to accomplish this.

We require each schema declared in asoxt ype ori nport Pl to be processed. Furthermore, if any definition
in aschema being processed refersto adefinition (el enent t ype or dat at ype) in another schema, that other
schema must be processed. The set of imports must be sufficient so that starting with the soxt ype and the

i mport s, and processing al schemata transitively referenced by them, all el enent t ypes and dat at ypes
found in the instance will have been processed.

4 Schema definitions

The definition of an XML schemais performed with the schenma element. The corresponding DTD fragment is:

<! ELEMENT scherma (i ntro?,
(datatype | el enenttype
| join
| commrent | nanespace
)*) >
<I ATTLI ST schema
prefix NMIOKEN #1 MPLI ED
uri CDATA #REQUI RED
soxl ang-versi on NMIOKEN #FI XED “V2. 0" >

The following isaminimal valid instance of a schema:

<schenmm uri = “urn:x-conmer ceone: sanpl eSchema” / >

However it is unlikely there will be many schemata containing no definitions at all.

A schema consists of any number of definitions of datatypes or element types (both of which will be explained
subsequently). In other words, a schemais a set of definitions, not the set of files, database entries, etc., we use
to store a representation of these definitions: the physical storage mechanism we use may change frequently,
without the set of definitions being affected at al. A schemamay start out as a singlefile, then be split among

Schema definitions

several files (which would currently be linked using thej oi n mechanism described below), before being stored
in adatabase. But despite being stored in three different ways, the set of definitions remains the same, and it is
that set which comprises the schema.

Each schema has a unique nameto identify it. ThisnameisaURI, givenintheuri attribute of theschena
element in afragment. In essence, it proclaimsthe set of definitionsin this schema element to be a subset of the
definitions forming the schemaidentified by the uri attribute.

Thej oi n construct allows definitions from externally defined fragments belonging to the same schemato be
pulled in.

There are three main classes of symbols created during the construction of a Schema: el enent t ype names,
dat at ype names, and nanmespace prefixes. Inthe current version of the language, both el ermrent t ype
names and dat at ype names are maintained in asingle set; it isillegal to use the same name to represent both
an element type and a datatype. Prefixes for namespaces, however, are kept separately. Itisentirely legal,
although potentially confusing, to use the same name for anamespace prefix asfor anel ement t ype or
dat at ype.

NOTE Itisour intention to separate the dat at ype and el erment t ype namespaces in a future ver-
sion of SOX. When we do so, thiswill be entirely backwards compatible. The expressive
power of SOX, however, is unchanged whether the namespaces are separated or coall esced.

Thepr ef i x attribute specifies a prefix available for referencing names created in this schema. Asthe current
schemais the default namespace for dereferencing names, this is not strictly necessary, however it can be useful
when definitions from several namespaces are mixed in close proximity.

Theuri attribute provides a URI establishing the namespace of this schema fragment. This attribute has
become required to prevent accidental name capture through the join mechanism described below. This must be
an absolute URI.

Thenamespace element is considered a declaration, not adefinition. The namespace being declared is
defined el sewhere (probably in a Schemafile)

N.B. SOX does not deal with anumber of linking issues related to the organization of schematainto multiple
files.

Thei nt r o element is available to provide an introduction to the schema as awhole. It consists of a humber of
HTML elements. The exact allowable contentsof i nt r o isavailableintheht m t ext . ent filereproduced at
the end of this document.

4.1 Validity issues

A Schemaisabout types. Typesare both defined and referenced. Referencing isdone using names. Once atype
(or namespace) is given a name (or prefix) in afragment, that name that name is bound in that fragment. Names
that are only referenced are free in that fragment.

A Schema fragment is processed in an environment. That environment extends beyond the fragment to include
other schemata and the SOX definition itself. This document defines how the environment of afragment is
defined, but does not discuss how it is physically constructed.

A Schema fragment cannot be successfully processed unless all the names that are freein it are bound some-
where in itsenvironment. Itisan error for a name to be bound twice in a fragment’s environment.

A fragment specifiesits environment by providing bindings for all the free namesit contains. There are four
pieces to its environment that afragment must specify:

1. Thefragment itself. Thisincludes those names defined in the fragment. The fragment specifies this by its
own existence.

2. Therest of the Schemathis fragment isdefined in. Thisis specified by theur i attribute ontheschena ele-
ment.

3. Those schemata referenced directly or indirectly from this fragment, as explained below. These are specified
in the namespace declaration element.

4. The SOX definition. Thisincludes all names defined in this specification or its successors. Theversionis
specified by thever si on attribute of the schema element.

Names are either qualified or unqualified. Unqualified names must be defined either in the current fragment, in
therest of the schema, or in the SOX definition. It can only be defined in one of the three. Qualified names must
be defined in the schema declared for that name with a namespace declaration. For each qualified namein a
fragment there must be a corresponding namespace declaration in the same fragment. The schena element
itself is considered a namespace declaration for the current namespace, so qualified names using the value in the
pr ef i x attribute of the schena element must resolve to the current schema (although not necessarily in the
same fragment). Inthisversion of the languageit isan error to create adefinition whose local name is either one
of theintrinsic datatypes.

5 Namespace declar ations

<! ELEMENT nanespace (expl ai n?)>

<I ATTLI ST nanespace
prefix NMIOKEN #REQUI RED
namespace CDATA #REQUI RED >

Namespace declarations

All of the names defined in a single Schema belong to the same namespace, and can be used without qualifier.
Schemata, however, frequently need to refer to definitionsin other namespaces. A namespace declaration allows
accessto definitionsin the referenced schemawhen appearing with an appropriate prefix attribute. A namespace
declaration is scoped to the current schema fragment only. Namespace declarations made in one schema frag-
ment are not visible in other fragments belonging to the same schema, even when referenced through aj oi n.

NOTE Wewill use aprefix attribute for the prefix, instead of using colonized names, in accordance
with the XSDL spec. The prefix attribute shows up on various elements, including at t def ,
scal ar, and ext ends, al of which include areference to a definition.

XML requiresthe use of qualified namesto make such referencesin document instances. A qualified namein an
instance consists of two parts separated by a colon:

* A prefix, which is the value of a prefix attribute specified in a namespace declaration.
* A local name, which corresponds to some name defined in the target namespace.

SOX implements qualified names through the use of two attributes, one for the name, and one for the prefix.
Qualified names can be used wherever areference to a definition is allowed - a schema cannot define anamein
another schema, but it can extend an elementtype from another schema, or use a datatype from another Schema.
For example, the following fragment declares the urn:foo namespace and associates it with prefix bar:
<namespace prefix = “bar” nanespace = “urn:foo”/>

If we later need to include afoobar element from the urn:foo namespace in an element type that would be done
using the following fragment:

<el enenttype nane = “et”>
<nodel >
<el enent prefix = “bar” type = “foobar” nane = “whatever”/>
<el enent prefix = “bar” type = “foobar”/>

</ nodel >
</ el ementtype>
A valid instance of thiswould be:

<et ><what ever ><bar: f oobar xml ns: bar="urn: f 00"/ ></ what ever >
<bar: foobar xnl ns:bar="urn:foo"/></et>

5.1 Validity issues

Each prefix must be unique within a schema fragment. Whileit is not afatal error to declare a non-existent
namespace, it isafatal error to reference an element in a non-existent namespace, or to reference a non-existent
element in an existing namespace. Both of these are semantic errors. It isafatal runtime error if the processor is

unableto retrieve adefinition during processing. A processor should distinguish among these cases. This speci-
fication does not address the issue of how to retrieve definitions.

The value of the namespace attribute of the namespace declaration must be the URI of a schema, as described
above. In other words, it must be the same as the value appearing in the uri attribute of the schema element of
fileswhich define that schema.

6 Explain element

Theexpl ai n element existsinside several different SOX constructs. It provides a hook for including docu-
mentation within a schema and exploits commonly known HTML constructs.

<I ELEMENT explain (title?, synopsis?, (%tm.block;)+) >
Thetitleandht m . bl ock elementsare common HTML constructs whose exact definitions are specified in

theht m t ext . ent fileincluded at the end of thisdocument. The synopsi s isused to give a purpose or
synopsis to the thing being expl ai ned. Itisasingle paragraph of text.

6.1 Validity constraint

Because it isHTML embedded in XML, all the HTML constructs must be used in awell-formed manner. Itis
common to take advantage of SGML tag minimization in writing HTML documents, but that would result in
well-formedness errorsin a SOX schema.

7 Element type definitions

In XML Schema documents, element type definitions reproduce the expressiveness of XML element type decla
rations using explicit element and attribute markup. An element type may be defined by using theel enment -

t ype element with the required nane attribute, and a subordinate nodel or ext ends element (both of which
will be described subsequently).

The corresponding DTD fragment is:

<! ELEMENT el enenttype
(explain?, (extends | ((enpty|nodel), (attdef)*)))>
<I ATTLI ST el enenttype
nane NMIOKEN #REQUI RED >

The following example defines an element type of nameinline;

Element type definitions

<el enenttype nane="inline">
<expl ai n>
<synopsi s>Thi s defines the <enpinline</en> el enent </ synopsi s>
</ expl ai n>
<nodel >
<string/>
</ nodel >
</ el ementtype>

A mechanism for attaching attributes to an element type is described | ater.
7.0.1 Valid instance
A valid instance for this fragment would be:

<inline>This is a string</inline>

7.1 Element type name

The name of an element type may be any valid unqualified XML element type name corresponding to the Nane
production inthe XML 1.0 language definition. The name must be unique among the names of element types and
datatypes defined in the current Schema, which includes the current document or other documents belonging to
the same Schema processed through the j oi n mechanism or other resolution mechanism.

An element type may be referenced by the el enent and ext ends elements.

Itisafatal error to re-assign an element name, or to reference an element type which is not defined.

The value of the nane attribute must be unique across all el enment t ype names defined in this schema.

7.2 Content model

The content model of an element type defines the structure and composition of an element of that typein an
XML instance. The definition of acontent model in XML Schema documents extends the expressiveness of
XML DTDs by providing greater specificity of the minimum and maximum number of times some content
model atom may be repeated. Thisallows an XML Schema designer with more precise control than is offered by
XML’s*, ?and + occurrence indicators.

The DTD fragment corresponding to an content model definition is:

<! ELEMENT nodel
(string| el ement| choi ce| sequence) >

7.2.1 Empty content specification

Anenpt y atomis used to indicate that an element may not contain any content, asin the case of the BR element
below:

<el enent t ype nane="BR'>

<enpty/>
</ el ementtype>

In order to properly support extensibility (explained below) an enpt y content model is considered to be an
empty sequence.

Valid instances are;
<BR/ >

or:

</ BR>

7.2.2 Sring content model atom

Thest ri ng atom indicates that a content model is simply string content and is an evolution of #PCDATA. It
can be used as in the example above. In addition, the string value may be constrained to be of a particular
datatype defined by the optional dat at ype attribute (and pr ef i x, if the datatype isin another schema) as can
be seen in the DTD fragment:

<! ELEMENT string
EMPTY>
<I ATTLI ST string
prefix NMIOKEN #1 MPLI ED
dat at ype NMIOKEN "string" >

Any element type with st ri ng inits content model is considered to be a choice group with an occur s value
of “*". Thisis consistent with the XML 1.0 spec which requires that any content model containing #PCDATA be
in achoice with aKleene star. It isunclear if thisrestriction will be maintained in the Schemaworld.

In the example below, the size element type's content model is string content constrained to beani nt ;

<el enent type nane="si ze" >
<nodel >
<string datatype="int" />
</ nodel >
</ el ementtype>

A valid example of this would be;

10

Element type definitions

<si ze>12345</ si ze>

However the following would not be valid:
<si ze>12r 34</ si ze>

7.2.3 Element content model atom

A content model may also comprise zero or more repetitions of another element. The DTD fragment for this def-
initionis:

<! ELEMENT el enent

EMPTY>
<! ATTLI ST el enent
prefix NMIOKEN #| MPLI ED
type NMIOKEN #REQUI RED
name NMIOKEN #| MPLI ED
occurs CDATA #| MPLI ED >

The defined el ement isan instance of either a previously defined datatype or element type, which isrefered to
by the requiredt ype attribute. Asbefore, itisafatal error to reference adatatype or element type that is not
defined.

For purposes of extensihility, a content model with just oneel erment isconsidered asequence of length one.

The narre attribute may be used to assign a nameto the defined el emrent when it appearsin an instance. As
datatypes are not also element types, the namne attribute must have avalue whent ype references a datatype.
When nane is specified, this shows up as an additional element wrapping an element of the referenced type.

The following fragment demonstrates the use of nane. Thetypei nt refersto the built-in integer datatype:

<el enenttype nane = “paragraph”>
<nodel >
<string/>
</ nodel >
</ el ementtype>

<el enenttype nane = “bl ock” >
<nodel >
<sequence>
<el enent name “p” type = “paragraph’/>

<el enent name
</ sequence>
</ nodel >
</ el ementtype>

“position” type = “int”/>

1

A valid instance would look like this;

<bl ock><p><par agraph>this i s the paragraph</paragraph></p><positi on>12345</
posi ti on></bl ock>

The following would not be valid:

<bl ock><par agr aph>you nust use the nane</ paragr aph><i nt >1</i nt ></ bl ock>

Theoccur s attribute indicates the number of repetitions of the instanced el erment . It can take on the values
of:

* one of the Kleene operators, “*” (0 or more repetitions), “?” (0 or 1 repetitions) or “+” (1 or more repeti-
tions)

e avaueof theform“N1, N2” (avalue between aminimum of N1 and a maximum of N2 occurrences) where
N1 and N2 are non-negative integers (N1 <= N2)

e avaueof theform “N1,*” where N1isanon-negative integer. Thisindicates at least N1 occurrences but no
upper maximum

We will call an occurswhere N1 is not equal to N2 an indefinite occurs. The degenerate case of “0,0” is allowed
and means exactly 0 repetitions, which istreated the same as if the declaration did not occur.

NOTE Valuesof theform“NL, N2” and “NL1, *” are not currently supported. They will be treated as
anoccurs of “+" if N1 isgreater than 0, or asa“* " otherwise.

In the following exampl e, the definition of the content model for al i st element type specifiesthat it contains a
minimum of 2 and amaximum of 9i t emelements.

<el enenttype nane="list">
<nodel >
<el enent type = "itenl occurs="2,9"/>
</ nodel >
</ el ementtype>

A valid instance of the above would be:
<list><itenm ><item ></|ist>

7.2.4 Choice content model atom

The choi ce atom defines a content model to comprise one of a set of choices of el enent , choi ce or
sequence content models. Therelevant DTD fragment is:

<! ELEMENT choi ce

12

Element type definitions

((el ement | choi ce| sequence),
(el enent | choi ce| sequence) +) >
<! ATTLI ST choi ce
name NMIOKEN #| MPLI ED
occurs CDATA #1 MPLI ED >

Aswith el enent , theoccur s attribute specifies the number of repetitions, and it can take the same values as
defined earlier.

In the following example, thedl element type's content model specifiesthat either asingledt or asingle dd
element is allowed.

<el enent type nanme="dl ">

<nodel >
<choi ce>
<el ement type="dt"/>
<el ement type="dd"/>
</ choi ce>
</ nodel >

</ el ementtype>

A valid instance would be:

<dl ><dt/ ></dl >

or
<dl ><dd/ ></ dl >

but not:
<dl ><dd/ ><dt / ></ dl >

7.2.5 Sequence content model atom

The sequence atom defines a content model to consist of the specified el enent , choi ce or sequence con-
tent models appended together in the order specified. The relevant DTD fragment is:

<! ELEMENT sequence
((el ement | choi ce| sequence),
(el enent | choi ce| sequence) +) >
<I ATTLI ST sequence
name NMICKEN #| MPLI ED
occurs CDATA #| MPLI ED >

13

Asbeforethe occur s attribute specifies the number of repetitions of the entire sequence, and it can take the
same values as defined earlier.

In thefollowing example, thedl element type's content model specifiesthat asingledt followed by asingledd
isalowed.

<el enent type nanme="dl ">
<nodel >
<sequence>
<el ement type="dt"/>
<el ement type="dd"/>
</ sequence>
</ nodel >
</ el ementtype>

A valid instance would be:
<dl ><dt / ><dd/ ></ d| >

7.2.6 Combining content model atoms

The various content model atoms defined above may be combined to allow the definition of complex content
models.

For example, thedl element type's content model below specifiesthat adh isfollowed by two or moredt or dd
elements.

<el enent type nane="dl ">

<nodel >
<sequence>
<el ement type="dh"/>
<choi ce occurs="2,*">
<el ement type="dt"/>
<el ement type="dd"/>
</ choi ce>
</ sequence>
</ nodel >

</ el ementtype>

A valid instance would be:
<dl ><dh/ ><dt / ><dd/ ><dd/ ><dt / ></ d| >

14

Elementtype inheritance

7.3 Validity Issues

Theoccur s attribute may not occur on the outermost sequence or choi ce inanel enent t ype definition.
Thisisthesequence or choi ce immediately contained within model . The outermost sequence or
choi ce withinthe nodel must occur exactly once.

The value of the name attribute (if any) given to an element, choice, or sequence, must be unique within the
innermost enclosing construct. For example, the following is legal:

<sequence>
<el enent name = “a@” type = “string”/>
<el enent name = “b” type = “int"/>

</ sequence>

[T]

while the following is not:

<sequence>
<el enent name = “a@” type = “string”/>
<el enent nanme = “a” type = “int"/>

</ sequence>

Likewise, thefollowing isvalid:

<sequence>
<el enent name = “a@” type = “string”/>
<sequence nanme = “c”">
<el enent name = “a@” type = “string”/>
<el enent name = “c“ type = “int”/>

</ sequence>
<el enent name = “b” type = “string”/>
</ sequence>

8 Elementtype inheritance

Asin object-oriented inheritance, an element may specialize (or subclass) from another element by inheriting its
structure and then adding on to its content model. Inheritanceis specified using the ext ends construct, and the
relevant DTD fragment is:.

<! ELEMENT ext ends (append?, attdef*)>
<! ATTLI ST ext ends
prefix NMTOKEN #1 MPLI ED
type NMIOKEN #REQUI RED >
<! ELEMENT append
(el enent | choi ce| sequence) +>

15

Thet ype attribute refers to the base element type that is being extended, and the structure of the append atom
has the same contents as that of nodel . The base type must be already defined. The contents of the append
element are added to the end of the parent’s content model (the outermost sequence). Notethat theappend
element has been made optional. This makes it possible to declare semantically distinct element types whose
structures remain the same as that of some common parent.

In the following example, the element type dat ednot e has the content model of the element type it extends
(not e) with an appended date (using the intrinsic date datatype). Thenul t i not e element type polymorphyi-
cally can use either..

<el enent t ype nane="note">
<nodel ><el emrent type =
</ el ementtype>

[T]

p” occurs = “+"></nodel >

<el enent t ype nane="dat ednot e" >
<extends type="note">
<append>
<el enent type="date" nane
<el enent type="tine” nane
</ append>
</ ext ends>
</ el ementtype>

“adat e” >
“atime” occurs = “?"/[>

<el enent type name = “nul tinote”>
<el enent type = “note” occurs = “+"/>
</ el ementtype>

Thefollowing isavalid instance of nul t i not e:

<nmul ti not e><not e><p>This is a plain note</p></note><dat ednot e><p>This is a
dat ed not e</ p><adat €>19981209</ adat e><at i ne>10: 23: 32</ at i ne></ dat ednot e></
mul ti not e>

8.1 Interaction of namespaces and extension in document instances

SOX permits an elementtype in one namespace to extend an elementtype in another Schema. In order to work
correctly with the current draft of the W3C Namespace Recommendation, each element in an instance belongsto
the namespace in which it was declared. 1n the above example, if not e were declared in schemaFoo. sox and
both dat ednot e andnul t i not e in Bar . sox, then the following would be an appropriately prefixed ver-
sion of the above example:

16

Elementtype inheritance

<bar: nultinote xm ns: foo="Foo.sox” xnlns:bar="Bar.sox">

<f 0oo: not e><f 0o: p>This is a plain note</foo: p></foo: note>

<bar: dat ednot e><f 0o: p>This is a dated note</foo: p>

<bar: adat €>19981209</ bar : adat e><bar: ati me>10: 23: 32</ bar: ati ne>
</ bar : dat ednot e></ bar: nmul ti not e>

A prefered solution would be to consider local names as being in the namespace of the elementtype they are
declared in (or its subtypes) and therefore need not be prefixed. Thiswould be similar to the treatment of
attributes.

8.2 Validity issues
In order to support extensibility, each elementtype must be either a choice or a sequence. By default:

1. anenpty elementtypeis considered to be an empty sequence.
2. An elementtype with amodel of just el enent isconsidered to be a sequence.
3. Anelementtype with amodel of st ri ng is considered to be a choice.

There are some constraints placed on the form of content models to avoid ambiguous models and interminable
documents. These are an extension of similar restrictionin XML 1.0.

For any possible path in the parse tree from an element to a descendant of itself there must be an intervening
optional node (?, *, or indefinite occurs) or intevening choice node with at least two children. This assures that
infinite documents are not required.

For any optional node in the parsetree (?, *, +, indefinite occurs, or choice), none of the descendants of elements
initsfirst set may beinitsfollow set.

These conditions continue to hold when extending an elementtype.

Due to the desire to maintain substitutability of extended elementtypes with their base type, SOX 2.0 does not
allow the extension of elementtypes whose content model is choice. In order to maintain substitutability, any
element extending a choice would need to be a subtype of something aready in the choice, soit would already be
valid in the parent type.

When extending a sequence with a occurs of indefinite extent, the resulting content model must be checked for
ambiguity with itself. In other words, if the parent model was x*, where x is some content model, then the con-
tent model xx (x followed immediately by x) must have been unambiguous. If the child model isnow x+e (i.e., X
plus some additional element), then the content model (x+e)(x+€) must still be unambiguous.

Within an el enment , thevalue of the nane attribute is scoped to the surrounding el erment t ype. It neither
creates nor prevents the creation of atop level definition using the same name. However, in order to maintain

17

backwards compatibility with XML 1.0, the binding between nane and t ype must be global. In other words,
once aname has been used with a particular type, it cannot be used with another type. We expect thisrestriction
to be relaxed in afuture version.

9 Datatypes

Along the lines of being able to define element types, XML Schema provides the meansto define and refer to
datatypes. XML Schema defines a set of intrinsic datatypes, listed below, from which user-defined datatypes
may be derived. Some of these have been refered to el sewhere in this document. It also (currently) providesthe
dat at ype element for actually defining new datatypes. The appropriate DTD fragment is:

<! ELEMENT dat at ype
(expl ai n?, (enuneration|scal ar|varchar)) >
<I ATTLI ST dat at ype
name NMIOKEN #REQUI RED >

The value of the name attribute specifies the name of the new datatype. This must be unique across all the
datatypes defined for this schema. The three operators, enuner at i on, scal ar, andvar char (all further
described below), each derive a new datatype from an existing datatype. The existing datatype can be either one
of theintrisic types, or some other user-defined datatype, whether in this schema or another. Both scal ar and
var char have some restrictions on which datatypes they can extend, as described bel ow.

9.1 Intrinsic datatypes

Theintrinsic datatypes define the domains of the atomic data unitsin XML Schema documents. The list below
includes those datatypes defined intrinsic to this version of the Schema language.

boolean
A value of either “true” or “false’

string
A sequence of characters.
Format: X*

URI
A sequence of charactersforming avalid URI:

number

18

Datatypes

An infinite precision number.
Format: [+-][0-9]*[*."[0-9]*]7

float

A single precision floating point number in the range -3.40282347 * 10E38 to 3.40282347 * 10E38
Format: [+-][0-9]*['."[0-9]*]7?

double

A double precision floating point number in the range -1.17549435 * 10E308 to 1.17549435 * 10E308
Format: [+-][0-9]*["." 7[0-9]*]?

int
An integer in the range -2,147,483,648 to 2,147,483,647
Format: [+-]?70-9]*
long
An integer in the range -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
Format: [+-]?70-9]*
byte
An integer in the range -128 to 127
Format: [+-]?70-9]*
ID
An D isaname which must be unique within the instance and names the node for which it is defined. The
value of an ID cannot be reused within the instance.
Format: NMTOKEN production of XML 1.0 specification.
IDREF
An IDREF must contain the value of an ID string declared el sewhere in the document.
IDREFS
A list of whitespace delimited IDREF values.
NMTOKEN
A string corresponding to the values of the NMTOKEN production of the XML 1.0 specification.
NMTOKENS

19

A list of whitespace delimited NMTOKEN values.

date

A date including month, day, and year
Format: YYYYMMDD

time
A time accurate to the nearest second with optional offset from GMT
Format: HH:MM:SS[[+-]HH:MM]?

datetime

A combination Date and Time. Note the presence of a“T" character between the date and time portions,
and the use of colons to separate hours, minutes, and seconds. These are as per 1SO 8601.

Format: YYYYMMDDTHH:MM:SY[[+-]HH:MM]? (the first MM is Months, the other two are minutes)

9.2 Enumeration datatypes

XML Schema documents provide a mechanism for defining enumerations to constrain attribute or element string
content. Anenuner at i on datatypeis afinite set of values enumerated by the opt i on elementsinside the
enuner at i on element.

<! ELEMENT enuner ation
(explain?, option)+ >
<! ATTLI ST enuneration
prefix NMTOKEN #| MPLI ED
dat at ype NMIOKEN #REQUI RED >

<! ELEMENT option (#PCDATA)* >

Thedat at ype attribute of the enumeration specifies the instrinsic (see list above) or user-defined datatype
(i.e., otherenuner ati on,var char, orscal ar) being refined. If the datatypeisnot defined in this Schema,
then the prefix of the appropriate schema must be specified.

Each opti on hasavalue representing avalid value for the dat at ype being extended.

The following example demonstrates the definition and use of an enumeration datatype:

<dat at ype nane="col ortype">
<enuner ati on dat at ype="NMIOKEN" >
<opti on>Red</ opti on>
<opti on>Bl ue</ opti on>
<opti on>Gr een</ opti on>

20

Datatypes

</ enuner ati on>
</ dat at ype>

<el enent type nane="car">

<enpty/>

<attdef name="col or" datatype="col ortype"><required/ ></attdef>
</ el ementtype>

<el enent t ype nane="bus">
<nodel >
<el enent name="col or" type="col ortype">
</ nodel >
</ el ementtype>
The following are valid instances:

<car color="Red"/>

<bus><col or >Bl ue</ col or ></ bus>

9.3 Scalar datatypes
Scalar datatypes are used for creating subtypes of nunber. Therelevant DTD fragment is:

<! ELEMENT scal ar EMPTY >
<! ATTLI ST scal ar

prefix NMTOKEN #| VPLI ED
dat at ype NMIOKEN "nunber"
digits CDATA #| VPLI ED
deci mal s CDATA #| MPLI ED
m nval ue CDATA #| MPLI ED
maxval ue CDATA #| MPLI ED

m nexcl usi ve (true | false) "false"
maxexcl usi ve (true | false) “false" >

Di gi t s specifiesthe maximum number of digitsfor the integral part of the number, deci mal s specifiesthe
maximum number of digits for the fraction part of the number. The following constraints must hold:
* If thedatatypeisasubtypeofi nt,| ong, or byt e, thendeci mal s must be unspecified or 0.

* M nval ue specifiesthe low end of the range of possible values. Maxval ue specifiesthe high end. M n-
val ue must be lessthan or equal to maxval ue.

e If mi nval ue (respectively, maxval ue) isunspecified, then it is either the minimum (resp. maximum) pos-
sible value given the specified values of digits and decimals, or it isthe value specified by the parent datatype

21

Both mi nval ue and maxval ue must be specifiable with the given valuesfor di gi t s anddeci nal s, or
must be expressible as proper values for the parent class.

* M nexcl usi ve and maxexcl usi ve determine whether the minimum number, respectively largest num-
ber, in the range isincluded.

e Thevaluesfordi gi t s anddeci mal s must be non-negative integers. Both must be less than or equal to
the values specified (if any) for the parent class.

* Thevalue of the datatype must be either one of theintrinsic scalar datatypes (byte, | ong,i nt,fl oat,
doubl e, nunber), or of ascalar datatype derived from one of these intrinsics.
An example scalar would be:
<scalar digits = “4” decimals = “3” ninvalue = “-9999” maxval ue = “8888”
m nexcl usi ve="true”/ >
The following are valid: -9998.999, 8887.999, 0.0, 8888.
Thefollowing areinvalid: -9999, 8888.001.

Thenunmber datatype coversall rational numbers which can be finitely specified asadecimal (i.e., it does not
cover infinitely repeating decimals, such as 1/9, or irrational reals, such as 1t). The other intrinsic classes are
designed to be easily mappabl e to existing datatypes in common programming languages.

9.4 Varchar types
Var char, adapted from SQL, is for specifying string types with fixed maximum length.

<! ELEMENT varchar EMPTY>

<I ATTLI ST var char
prefix NMIOKEN #| MPLI ED
dat at ype NMIOKEN "string"
max| engt h CDATA #REQUI RED>

The value of max| engt h must be a non-negative integer.

An example varchar useis:

<dat at ype nane = “var”>
<varchar maxlength = “4"/>
</ dat at ype>
<el enenttype nane = “wap”>
<nodel >
<string datatype = “var”/>

22

Attribute definitions

</ nodel >
</ el ementtype>
A valid instance would be:

<wr ap>abc</w ap>

aswould:

<wr ap>abcd</ wr ap>

An invalid instance would be:

<wr ap>abcde</ wr ap>

9.5 Validity issues

Fl oat ,doubl e,i nt,| ong, and byt e are all predefined scalar types. This meansthey can be used as base
typesfor any new definition of ascal ar and can be referenced as datatypes. The value of max| engt h invar-
char must be greater than or equal to 0. Note that alength of 0 implies an empty string. The datatype of avar -
char must be either another var char or oneof st ri ng, NMTOKEN, NMTOKENS, | D, | DREF, or | DREFS .

The names of theintrinsic types are reserved by SOX. It isan error to define adatatype or elementtype using the
name of one of the intrinsic types.

10 Attribute definitions

Attribute definitionsin XML Schema documents may be defined as part of the element type definition. An
attribute definition has a name and a type, and must include a presence element. The relevant fragment of the
DTD s

<! ELEMENT att def
(expl ain?, (enuneration | scalar | varchar)?,
(required|inplied|default|fixed)?)>
<! ATTLI ST att def
nane NMIOKEN #REQUI RED
prefix NMTOKEN #1 MPLI ED
dat at ype NMIOKEN #l MPLI ED>

The name of the attribute is defined by the value of nane, and it may be of acertain dat at ype. It must be

unique among the attributes for this elementtype. If avalueis not given for the dat at ype attribute and the
att def doesnot contain anenuner ati on, scal ar, or var char, then adatatype of st ri ng is assumed.

23

An attribute value's presence in an instance may be specified asdef aul t ,fi xed,requi redori npl i ed,
asinthe XML specification. If novalueisgiven for the presence, thenit defaultstoi npl i ed. Inall cases, the
value of an attribute must be valid for its datatype. The DTD fragment for the presence elementsis:

<! ELEMENT def aul t

(#PCDATA) >
<! ELEMENT fi xed
(#PCDATA) >
<! ELEMENT required
EMPTY >
<! ELEMENT inplied
EMPTY >

A def aul t presence indicates that the value of the attribute is automatically set to the default value if noneis
specified. Inaninstance, if the attribute is defined to have another value, the default isignored.

A f i xed presence indicates that the value of the attribute is assumed to be the fixed value if no valueis speci-
fied. The attribute may also be explicitly assigned exactly thisfixed value. In an instance, if the attribute is
defined to have a different value, this signals afatal error.

An empty value can be specified for def aul t or f i xed.

A requi r ed presenceindicates that in an instance, whenever the parent element appears, this attribute must be
assigned avalue.

Andfinally, ani npl i ed presenceindicates that this attribute is entirely optional and no default value is speci-
fied for the case where it is not present.

In XML Schema documents, unlike XML DTDs, enumerations may be specified for any attribute type. This
information will belost if an XML DTD is generated from an XML Schema document, except for attributes of
type NMTOKEN, indicating a name token. If thereisan enuner at i on specified for an attribute and also a
fixedordefault value thenthat fi xed or def aul t value must be amember of theenuner ati on.

Thus, example attribute definitions (within the definition of an el errent t ype, of course) might be:

<el enent type nane="car">
<enpty/>
<attdef name = “owner” datatype = “string”/>
<attdef nanme="col or">
<enuner ati on dat at ype="NMIOKEN" >
<opti on>Red</ opti on>
<opti on>Bl ue</ opti on>

24

Including schema files

<opti on>Gr een</ opti on>
</ enuner ati on>
<requi red/ >
</ attdef>
</ el ementtype>

An instance corresponding to this definition would look like:

<car color="Blue" owner = “John Smth"/>

10.1 Validity constraints

Itisafatal error for the dat at ype attribute of theat t def element to have avalueif thereisan enclosed
enuner ati on,scal ar, or var char.

11 Including schemafiles

An externally-defined schema file whose definitions belong to the same namespace may be pulled in and parsed
with the current schema definition. Thisisaccomplished using thej oi n construct. The relevant fragment of
theDTD is

<! ELEMENT j 0i n
(expl ai n?) >
<I ATTLI ST join
dat at ype NMIOKEN #FI XED "schema"
public CDATA #1 MPLI ED
system CDATA #REQUI RED>

Thedat at ype attribute isfixed as only schemas may beincluded for now. Thepubl i ¢ attributeisthe public
identifier of the file as defined in the XML 1.0 specification. The syst emattribute isthe URI of the file con-
taining the schema definition to be lexically included. The entity manager must resolve this URI.

A j oi nedfileisread only once by the parser. The parser determines identity between files by comparison of
the values of the sy st emattribute. Itisnotillegal for twoj oi n elementsto reference the same URI, but one
will beignored. Itisauser error to use two different URIs which ultimately map to the same file. Note that
reading a fragment twice will cause an error as the schema processor will create all its definitions twice.

11.1 Validity issue

Thejoined file must belong to the same namespace as the joining one, as identified by the URI attribute of the
root elements.

25

In the current implementation, both namespace andj oi n elements use URIsto point to external files, and
processing a hamespace involves retrieving the physical file referenced by the namespace element. Itisnot an
error for aj oi n element to reference this file again, however it isaruntime error for that file to actually be
retrieved a second time. In other words, no fragment for a schemais to be processed more than once.

<l o2 *dhxFdkkhkdhhdkhkhddhddhhhdhhrddhddhhdhrrrdddddhdbdbrrrrrrddddrbrbrrrrtrdsh >
<l-- SOX DTD -->

<l-- PUBLIC "-//Comerce One Inc.//DID SOX 2.0//EN' -->
<! -- SYSTEM "schema. dtd" -->

<l-- Copyright: Conmerce One Inc., 1997, 1998, 1999

Dat e creat ed: 17 Dec 1997

Dat e revi sed: 03 June 1999

Ver si on: 2.0
- >
<!__ R I S S S S I S O R R R S O S I O R R R R S I S kI S >
<!__ R R I I I I S S I R R R S S O R R R S S Rk S -->
<l-- Schema for Object Oriented XM

R R Sk S S I S I R I S O R I R S I S >
<!__ R R I S I I S O I O R R R S O S R I R R R S I R I I O >

<IENTITY % ht text SYSTEM "htnltext.ent">
ottt nl t ext;

<I ELEMENT schema (intro?, (datatype | elenenttype |
join | comment | namespace)*) >
<I ATTLI ST schema
prefix NMIOKEN #1 MPLI ED
uri CDATA #REQUI RED
soxl ang-versi on NMIOKEN #FI XED “VO0. 2. 2" >

I4INEERE E R R E R R R R EEE SRS EEE S S SRR R - >
<l - - ELE'VE’\”’S khkkkhkhkhkkhkhkhhhhhhhhhhhhhhhkhhhkhhkdhhhkdhhhhkrdhkrddrkk rkk **x*% - >
<l oo *dhxFdkkdkdhhkdkkhddhkdkdhhhdhrdddddhhdhrrrdddddhdhdrrrrrrrddddrbrbrrrrtrdsk - >

26

SOX DTD

<l-- An Elenment Type definition requires a nane.
It is defined to extend a naned el enent,
as an i nstance of a naned el enent,

as an EMPTY or ANY elenent with optional attribute definitions,

or with a content nodel with optional attribute definitions.

<! ELEMENT el enenttype
(explain?, (extends | ((enpty|nodel), (attdef)*)))>
<I ATTLI ST el ementtype
name NMIOKEN #REQUI RED >

<! ELEMENT enpty EMPTY >

<l o2 *dhFdkkhkdhhkhhhddhddhhhdhrdddddhhdhdrrrdddddhbdbdrrrrrrrddddrbrbrrrrtrdsk
<l - - 'vaL khkkkhkhkhkkhhkhhhhdhhhdhhhkhhhkhhhkhhkhkhhkdhkhhdhhhdhhhhkrdhkrdkhrkk rkk **x*%
I4INEERE R R R R R R R EEEEE SRR EEEE S SRR R R

<! ELEMENT node
(string| el ement| choi ce| sequence) >

<! ELEMENT ext ends (append?, attdef*)>
<I ATTLI ST ext ends
prefix NMIOKEN #| MPLI ED
type NMIOKEN #REQUI RED >

<! ELEMENT append
(el enent | choi ce| sequence) +>

<! ELEMENT el enrent EMPTY >
<! ATTLI ST el enent

prefix NMIOKEN #| MPLI ED
type NMIOKEN #REQUI RED

name NMIOKEN #| MPLI ED

occurs CDATA #| MPLI ED >

<I ELEMENT string EMPTY >
<I ATTLI ST string
prefix NMIOKEN #| MPLI ED
dat at ype NMICKEN "string" >

<! ELEMENT choi ce
((el ement | choi ce| sequence),

27

>

-->
-->
-->

(el enent | choi ce| sequence) +) >
<! ATTLI ST choi ce

name NMIOKEN #| MPLI ED

occurs CDATA #1 MPLI ED >

<! ELEMENT sequence

((el ement | choi ce| sequence),

(el enent | choi ce| sequence) +) >
<I ATTLI ST sequence

name NMICKEN #| MPLI ED
occurs CDATA #| MPLI ED >
<l-- replacenent for "include" -->

<! ELEMENT j oi n
(expl ai n?) >
<I ATTLI ST join
dat at ype NMIOKEN #FI XED "schema"

public CDATA #1 MPLI ED

system CDATA #REQUI RED>
<!__ EE IR I S S I R R R S O S I R R R S I S Rk I I O - >
<!__ ATTRI BLJTES khkkkhkkhhkkkhhhkkhhhkhkkhhhkkhdhkddhhkhdhdxddhkrdxddxrdhx*dkx*k*k*x*% - >
<!__ R R I S I S S I I S O R R R S I R S R R R S S I Rk I I O - >
<l-- An attribute definition has a name and dat atype, and nust have

a presence element "required|inplied|default]|fixed" included.
It may have a nanespace associated with it, or inherit

enuneration i s supposed to define the domain of acceptable valu
-->

<! ELEMENT att def
(expl ain?, (enuneration | scalar | varchar)?,
(required|inplied|defaul t|fixed)?)>
<I ATTLI ST att def
nanme NMIOKEN #REQUI RED
prefix NMIOKEN #1 MPLI ED
dat at ype NMIOKEN #1 MPLI ED>

<! ELEMENT def aul t

(#PCDATA) >
<! ELEMENT fi xed

(#PCDATA) >

28

SOX DTD

<! ELEMENT required

EMPTY >
<! ELEMENT i npl i ed

EMPTY >
<!__ EIE R b b b I R S I I I I S I I S I S I I R S I S S R R I I I I I S I I S I S S S I I I I I b - >
<!__ DATATYPE IR IR R I R S S R I S I b I I S I I R I R S I I I I S I I S S I S b b b b I b b b b - >
<!__ EIE R b b b I I I R S I I I I I I S I S I S R I I I I R I S R I I I S S S I I I I I b b - >

<! ELEMENT dat at ype
(expl ai n?, (enuneration|scal ar|varchar)) >
<I ATTLI ST dat at ype
name NMIOKEN #REQUI RED >

<! ELEMENT enunerati on
(expl ain?, option)+ >
<! ATTLI ST enunerati on
prefix NMTOKEN #| MPLI ED
dat at ype NMIOKEN #REQUI RED >

<! ELEMENT opti on (#PCDATA)* >

<! ELEMENT scal ar EMPTY >
<! ATTLI ST scal ar

prefix NMITOKEN #1 MPLI ED

dat at ype NMIOKEN "nunber"

digits CDATA #| MPLI ED

deci mal s CDATA #1 MPLI ED

m nval ue CDATA #1 MPLI ED

maxval ue CDATA #1 MPLI ED

m nexcl usi ve (true | false) "fal se"
maxexcl usi ve (true | false) "fal se" >

<! ELEMENT varchar EMPTY>

<I ATTLI ST var char
prefix NMIOKEN #| MPLI ED
dat at ype NMIOKEN "string"
max| engt h CDATA #REQUI RED>

P4 R R R R R R RS RS SRR RS SRR R R - >
<l - - COVIVE’\”’ KRR S R I O R R I R I I R b o b R - >
YR R R R R SRR R R EEE SRR RS S SRR R R - >

29

<! ELEMENT comment
(#PCDATA) >

<! -- Nanmespaces -->

<! ELEMENT nanespace (explain?) >

<! ATTLI ST nanespace
prefix NMIOKEN #REQUI RED
namespace CDATA #REQUI RED >

13 Appendix B: htmltext.ent - HTML element typesfor explain

<!__ R R I S I S S R R R S S R S R I R I >
<l-- HTM. Text: SOX uses HTM. el enent types for convenience. -->
<!__ R I S S I S I S S O R R R S O S I O R R R S I I Rk S I O >
<l-- Copyright: Conmerce One Systenms Inc., 1997, 1998

Date created: 17 Dec 1997
Date revised: 01 Mar 1999

Ver si on: 1.0 -->
<| - EIR I I I IR I I I I I I I I I IR I I I I R I IR I I I A I IR I R R A IR R R R R I R I b I I b I b I b I b I b I 3 >

<IENTITY % htm . nonheading " table | p| bg]| pre]| ol | ul | dI" >

<IENTITY % htm .text "#PCDATA| a | abbr | b | big | br
| cite| code | em]| i | ing

| g | small | span | strike | strong

| sub | sup | tt | u" >

<IENTITY % htm . headi ng.text "#PCDATA] a | abbr | b | big | br | cite |

code | em
| i | imy | q| small | span | strike | strong | sub | sup | tt | u" >

<IENTITY % htm . bl ock "h1| h2| h3| h4| h5| h6| %t i . nonheadi ng; * >

<!__ R R I S I S I I S O R R R S O S I O R R R S S I E E E E E E E - >

<l-- The intro element type is used to introduce a schema. It contains a
general description of the purpose and use of the schema’s docunent
type or conmponents. -->

30

Appendix B: htmltext.ent - HTML element types for explain

<! ELEMENT intro ((%tn.block;)+) >

<l-- The explain elenent is use to docunent a conponent within a schema. -->
<! ELEMENT explain (title?, synopsis?, (%tm.block;)+) >

<l-- The title is used to give a hunman readable title to sone type nane. -->
<l ELEMENT title (%tm . text;)* >

<l-- The synopsis is used to give a purpose or synopsis to the thing being
explained. It is a single paragraph of text. -->
<I ELEMENT synopsis (%tm .text;)* >

<l o2 FhFdkkhkdhhkdhhkhdhhddhhdhdhrdddddhdbdhdhrrddddddbdbdrrrrrrrddddrrbrrrrrdsk - >

<! ELEMENT h1 (%tm . heading.text;)* >

<! ELEMENT h2 (%tm . heading.text;)* >
<! ELEMENT h3 (%tm . heading.text;)* >
<! ELEMENT h4 (%tm . heading.text;)* >
<! ELEMENT h5 (%tm . heading.text;)* >
<! ELEMENT h6 (%tm . heading.text;)* >
<!__ R R I S S I S I I R R R S O S I O R I S S kI I - >

<! ELEMENT b (#PCDATA) * >
<! ELEMENT br EMPTY >
<! ELEMENT bi g (#PCDATA)* >
<! ELEMENT i (#PCDATA) * >
<! ELEMENT snmal |

(#PCDATA) * >
<! ELEMENT sub (#PCDATA) *
<I ELEMENT sup (#PCDATA)* >
<I ELEMENT stri ke

(#PCDATA) * >
<! ELEMENT tt (#PCDATA) *
<! ELEMENT u (#PCDATA) *

\%

VvV Vv

<! ELEMENT abbr (#PCDATA) *
<! ELEMENT ci te (#PCDATA) *
<! ELEMENT code (#PCDATA) *
<l ELEMENT em (#PCDATA) *
<l ELEMENT (q (#PCDATA) *
<! ELEMENT span (#PCDATA) *
<! ELEMENT strong
(#PCDATA) *

VVVVVYV

\%

31

P4 R R R S R S R R Y

<! ELEMENT a (%tm . text;)* >

<I ATTLI ST a
name CDATA #| MPLI ED
hr ef CDATA #| MPLI ED
title CDATA #| MPLI ED >
Cl oo kkkkkkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhhhhhhhkhhhhhhhxk __ >

<IELEMENT inmg (explain?) >
<! ATTLI ST i ng

src CDATA #REQUI RED
alt CDATA #REQUI RED
| ongdesc CDATA #1 MPLI ED
usemap CDATA #| MPLI ED >
<! . KhkkkhkhkkhkhkhkkhkhhkkkhhhkhkhhkhkhhhkhkhhkhkhhhkhdhkhdhkhkhdhkxdhhkhhxkrFdxrhhxkrdxxkhhx - >

<IELEMENT pre (%tm .text;)* >
<! ATTLI ST pre
xm : space (preserve) #REQUI RED >

<l o2 *dhFdkhkhkdhhhhkhddhddhhdhdhrddddddhdrrrrdddddhdbrrrrrrrddddrbrbrrrrtrdsk - >

<! ELEMENT p (%htm . text;)* >
<! ELEMENT bq (%tm . text;)* >

<! ELEMENT ol (Ih?, li+) >

<! ELEMENT ul (Ih?, li+) >

<I ELEMENT 1| h (%tm . heading.text;)* >

<I ELEMENT 1i (%tm . text;|%tm.block;)* >

<! ELEMENT dI (dh?, (dt,dd)+) >

<! ELEMENT dh (%tm . heading.text;)* >

<! ELEMENT dt (%tm . text;|%tm.block;)* >
<! ELEMENT dd (%tm . text;|%tm.Dblock;)* >

<l o2 *dhxkdkhddhhdhhrddhddhhdhdhrddddddhhdhdhrrddddddbdbdrdrrrrrrddddrbrbrrrrrdsk - >

<! ELEMENT tabl e
(thead?, tbody) >
<I ATTLI ST tabl e

col s CDATA #| MPLI ED
wi dt h CDATA #| MPLI ED
hei ght CDATA #| MPLI ED

32

Appendix B: htmltext.ent - HTML element types for explain

align (left|center|right]|justify) #l MPLIED

val i gn (top | middle | bottom| baseline) #l MPLIED
vspace CDATA #1 MPLI ED

hspace CDATA #1 MPLI ED

cel | paddi ng CDATA #1 MPLI ED
cel | spaci ng CDATA #1 MPLI ED

bor der CDATA #1 MPLI ED

frane (box| voi d| above| bel ow hsi des| vsi des| | hs| r hs)
#| MPLI ED

rul es (none| groups| rows| col s|all) #l MPLI ED >

<! ELEMENT t head
(tr)y+ >

<I ATTLI ST t head
align (left]center|right]justify) #l MPLIED
val i gn (top| m ddl e| bott om basel i ne) #l MPLIED >

<! ELEMENT t body
(tr)y+ >
<I ATTLI ST tbody
align (left]center|right]justify) #l MPLIED
val i gn (top| m ddl e| bott om basel i ne) #l MPLIED >

<! ELEMENT tr (th | td)+ >

<I ATTLI ST tr
align (left]center|right]justify) #1 MPLI ED
val i gn (top | middle | bottom| baseline) #l MPLIED >

<I ELEMENT th (%tm . text;|%tm.block;)* >

<I' ATTLI ST th
col span CDATA #1 MPLI ED
rowspan CDATA #| MPLI ED
wi dt h CDATA #1 MPLI ED
hei ght CDATA #1 MPLI ED
align (left]center|right]justify) #1 MPLI ED

val i gn (top | middle | bottom| baseline) #l MPLIED >

<!l ELEMENT td (%tm . text;|%tm.block;)* >

< ATTLI ST td
col span CDATA #1 MPLI ED
rowspan CDATA #| MPLI ED
wi dt h CDATA #1 MPLI ED

33

hei ght CDATA #1 MPLI ED
align (left]center|right]|justify) #| MPLI ED
val i gn (top | middle | bottom| baseline) #l MPLIED >

<l oo dkdkkkkdkkkdkhdhdhhdhbrrhdhdhdrbdbrrdbdbbrrbdbrrrbdrrbdbrrrdbdrrr __ >

	Schema for Object-Oriented XML 2.0
	Status of this document
	1 Abstract
	1. An extensive (and extensible) set of datatypes
	2. Inheritance among element types
	3. Namespaces
	4. Polymorphic content
	5. Embedded documentation
	6. Features to enable robust distributed schema management.
	1. Ensure that the public record accurately reflects the evolution of SOX. Members of the communi...
	2. Expose some of the fruits of our implementation experience to the general community, particula...

	2 Soxtype processing instruction
	3. The PI target, which is soxtype.
	4. The uri specifying a schema to be the default namespace of the instance.

	3 Import processing instruction
	3.1 Validity constraint

	4 Schema definitions
	4.1 Validity issues
	1. The fragment itself. This includes those names defined in the fragment. The fragment specifies...
	2. The rest of the Schema this fragment is defined in. This is specified by the uri attribute on ...
	3. Those schemata referenced directly or indirectly from this fragment, as explained below. These...
	4. The SOX definition. This includes all names defined in this specification or its successors. T...

	5 Namespace declarations
	5.1 Validity issues

	6 Explain element
	6.1 Validity constraint

	7 Element type definitions
	7.0.1 Valid instance
	7.1 Element type name
	7.2 Content model
	7.2.1 Empty content specification
	7.2.2 String content model atom
	7.2.3 Element content model atom
	7.2.4 Choice content model atom
	7.2.5 Sequence content model atom
	7.2.6 Combining content model atoms

	7.3 Validity Issues

	8 Elementtype inheritance
	8.1 Interaction of namespaces and extension in document instances
	8.2 Validity issues
	1. an empty elementtype is considered to be an empty sequence.
	2. An elementtype with a model of just element is considered to be a sequence.
	3. An elementtype with a model of string is considered to be a choice.

	9 Datatypes
	9.1 Intrinsic datatypes
	A value of either “true” or “false”
	A sequence of characters.
	Format: X*
	A sequence of characters forming a valid URI:
	An infinite precision number.
	Format: [+-][0-9]*[‘.’[0-9]*]?
	A single precision floating point number in the range -3.40282347 * 10E38 to 3.40282347 * 10E38
	Format: [+-][0-9]*[’.’[0-9]*]?
	A double precision floating point number in the range -1.17549435 * 10E308 to 1.17549435 * 10E308
	Format: [+-][0-9]*[’.’?[0-9]*]?
	An integer in the range -2,147,483,648 to 2,147,483,647
	Format: [+-]?[0-9]*
	An integer in the range -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
	Format: [+-]?[0-9]*
	An integer in the range -128 to 127
	Format: [+-]?[0-9]*
	An ID is a name which must be unique within the instance and names the node for which it is defin...
	Format: NMTOKEN production of XML 1.0 specification.
	An IDREF must contain the value of an ID string declared elsewhere in the document.
	A list of whitespace delimited IDREF values.
	A string corresponding to the values of the NMTOKEN production of the XML 1.0 specification.
	A list of whitespace delimited NMTOKEN values.
	A date including month, day, and year
	Format: YYYYMMDD
	A time accurate to the nearest second with optional offset from GMT
	Format: HH:MM:SS[[+-]HH:MM]?
	A combination Date and Time. Note the presence of a “T” character between the date and time porti...
	Format: YYYYMMDDTHH:MM:SS[[+-]HH:MM]? (the first MM is Months, the other two are minutes)

	9.2 Enumeration datatypes
	9.3 Scalar datatypes
	9.4 Varchar types
	9.5 Validity issues

	10 Attribute definitions
	10.1 Validity constraints

	11 Including schema files
	11.1 Validity issue

	12 SOX DTD
	13 Appendix B: htmltext.ent - HTML element types for explain

