
Schema for Object-Oriented XML 2.0

Authors:
Andrew Davidson
Matthew Fuchs
Mette Hedin
Mudita Jain
Jari Koistinen
Chris Lloyd
Murray Maloney
Kelly Schwartzhof

Status of this document
This document represents version 2.0 of the Schema for Object-Oriented XML (SOX). It replaces the previous
version of the SOX language specification and represents the current, implemented version of the language.

Comments on this document should be sent to brad.snyder@commerceone.com.

1 Abstract
This document describes SOX 2.0, the second version of the Schema for Object-Oriented XML. SOX is a
schema language (or metagrammar) for defining the syntactic structure and partial semantics of XML document
types. As such, SOX is an alternative to XML DTDs and can be used to define the same class of document types
(with the exception of external parsed entities). However, SOX extends the language of DTDs by supporting:

1. An extensive (and extensible) set of datatypes

2. Inheritance among element types

3. Namespaces

4. Polymorphic content

5. Embedded documentation

6. Features to enable robust distributed schema management.

All of these features are supported with strong type-checking and validation. A SOX schema is also a valid
XML instance according to the SOX DTD, enabling the application of XML content management tools to
schema management.
 1

SOX was initially developed to support the development of large-scale, distributed electronic commerce applica-
tions, but it is a general-purpose schema language for the whole range of applications of markup. As compared
to XML DTDs, SOX dramatically decreases the complexity of supporting interoperation among heterogenous
applications by facilitating software mapping of XML data structures, expressing domain abstractions and com-
mon relationships directly and explicitly, enabling reuse at the document design and the application program-
ming levels, and supporting the generation of common application components.

Although SOX 2.0 retains many of the features of SOX 1.0, it represents an additional year of actual implemen-
tation experience. Commerce One has a working implementation of this language and will be releasing products
based on it. Our goals in releasing this second version are two-fold:

1. Ensure that the public record accurately reflects the evolution of SOX. Members of the community wishing
to understand SOX, build tools using SOX, or interoperate with SOX applications, need access to the current
version of the language.

2. Expose some of the fruits of our implementation experience to the general community, particularly to assist in
the ongoing work at the W3C to develop an official XML Schema language.

From the markup world, the SOX proposal is informed by the XML 1.0 specification as well as the XML-Data
submission and Document Content Description submission. However, many of SOX’s requirements come from
the distributed computing world and the development of SOX has been heavily influenced by the Java program-
ming language.

2 Soxtype processing instruction
As a SOX document is not defined by a DTD, the native XML 1.0 Doctype declaration is not appropriate for a
document instance to declare SOX Schema information (note that this may not continue to be true once the W3C
Schema WG defines an official mechanism). Therefore we have created the soxtype declaration, which mimics
the XML doctype declaration, but using a processing instruction. The soxtype declaration must be the first state-
ment in a document following the optional XML declaration and declares that the default namespace of this doc-
ument is that of the given SOX Schema, just as a doctype declaration declares that an XML 1.0 document
conforms to the given Document Type Declaration (DTD). The soxtype declaration is not currently intended to
coexist in the same document with a doctype declaration, but there is no particular restriction prohibiting this.

The soxtype declaration includes three parts:

3. The PI target, which is soxtype.

4. The uri specifying a schema to be the default namespace of the instance.

An example declaration would look like:

<?soxtype urn:x-commerceone:document:com:commerceone:schema1.sox$1.0?>
2

Import processing instruction
where the schema definition is located through resolving the urn urn:x-commerceone:docu-
ment:com:commerceone:schema1:schema1.sox$1.0. The part following the “$” gives the version
number.

A small sample document would look like:

<?soxtype urn:x-commerceone:document:com:commerceone:schema1.sox$1.0?>
<Root>
 <Body/>
</Root>

The root element of the instance is not required to belong to the default namespace. This will be further elabo-
rated in the discussion of the import PI below.

3 Import processing instruction

With the arrival of namespaces and polymorphism, it is no longer necessarily possible to indicate a single
schema to which the entire instance conforms. Nevertheless, we require a mechanism to indicate a set of sche-
mata containing definitions for all the element and datatypes appearing in an instance. This function is handled
by the import processing instruction. The import PI contains one argument, an absolute URI indicating a
schema.

An example import PI would look like:

<?import urn:x-commerceone:document:com:commerceone:schema1.sox$1.0?>

where the schema definition is located through resolving the urn urn:x-commerceone:docu-
ment:com:commerceone:schema1.sox$1.0. The part following the “$” gives the version number.

A small sample document would look like:

<?soxtype urn:x-commerceone:document:com:commerceone:schema1.sox$1.0?>
<?import urn:x-commerceone:document:com:commerceone:schema2.sox$1.0?>
<Root
 <s2:Body
 xmlns:s2=“urn:x-commerceone:document:com:commerceone:schema2.sox$1.0”/
>
</Root>

In the following, the namespace attributes on Root overrides the default namespace declared in the soxtype PI,
and Body is assumed to also be in schema2.sox.
3

<?soxtype urn:x-commerceone:document:com:commerceone:schema1.sox$1.0?>
<?import urn:x-commerceone:document:com:commerceone:schema2.sox$1.0?>
<Root xmlns=“urn:x-commerceone:document:com:commerceone:schema2.sox$.0”>
 <Body/>
</Root>

3.1 Validity constraint

It is not necessary that for every element type appearing in the instance there be a corresponding import or
soxtype processing instruction. Nevertheless, all schema information must be available before processing of
the root element begins. We can define a transitive closure property over schemata to accomplish this.

We require each schema declared in a soxtype or import PI to be processed. Furthermore, if any definition
in a schema being processed refers to a definition (elementtype or datatype) in another schema, that other
schema must be processed. The set of imports must be sufficient so that starting with the soxtype and the
imports, and processing all schemata transitively referenced by them, all elementtypes and datatypes
found in the instance will have been processed.

4 Schema definitions
The definition of an XML schema is performed with the schema element. The corresponding DTD fragment is:

<!ELEMENT schema (intro?,
 (datatype | elementtype
 | join
 | comment | namespace
)*) >
<!ATTLIST schema
 prefix NMTOKEN #IMPLIED
 uri CDATA #REQUIRED
 soxlang-version NMTOKEN #FIXED “V2.0”>

The following is a minimal valid instance of a schema:

<schema uri = “urn:x-commerceone:sampleSchema”/>

However it is unlikely there will be many schemata containing no definitions at all.

A schema consists of any number of definitions of datatypes or element types (both of which will be explained
subsequently). In other words, a schema is a set of definitions, not the set of files, database entries, etc., we use
to store a representation of these definitions: the physical storage mechanism we use may change frequently,
without the set of definitions being affected at all. A schema may start out as a single file, then be split among
4

Schema definitions
several files (which would currently be linked using the join mechanism described below), before being stored
in a database. But despite being stored in three different ways, the set of definitions remains the same, and it is
that set which comprises the schema.

 Each schema has a unique name to identify it. This name is a URI, given in the uri attribute of the schema
element in a fragment. In essence, it proclaims the set of definitions in this schema element to be a subset of the
definitions forming the schema identified by the uri attribute.

The join construct allows definitions from externally defined fragments belonging to the same schema to be
pulled in.

There are three main classes of symbols created during the construction of a Schema: elementtype names,
datatype names, and namespace prefixes. In the current version of the language, both elementtype
names and datatype names are maintained in a single set; it is illegal to use the same name to represent both
an element type and a datatype. Prefixes for namespaces, however, are kept separately. It is entirely legal,
although potentially confusing, to use the same name for a namespace prefix as for an elementtype or
datatype.

NOTE It is our intention to separate the datatype and elementtype namespaces in a future ver-
sion of SOX. When we do so, this will be entirely backwards compatible. The expressive
power of SOX, however, is unchanged whether the namespaces are separated or coallesced.

The prefix attribute specifies a prefix available for referencing names created in this schema. As the current
schema is the default namespace for dereferencing names, this is not strictly necessary, however it can be useful
when definitions from several namespaces are mixed in close proximity.

The uri attribute provides a URI establishing the namespace of this schema fragment. This attribute has
become required to prevent accidental name capture through the join mechanism described below. This must be
an absolute URI.

The namespace element is considered a declaration, not a definition. The namespace being declared is
defined elsewhere (probably in a Schema file)

N.B. SOX does not deal with a number of linking issues related to the organization of schemata into multiple
files.

The intro element is available to provide an introduction to the schema as a whole. It consists of a number of
HTML elements. The exact allowable contents of intro is available in the htmltext.ent file reproduced at
the end of this document.
5

4.1 Validity issues

A Schema is about types. Types are both defined and referenced. Referencing is done using names. Once a type
(or namespace) is given a name (or prefix) in a fragment, that name that name is bound in that fragment. Names
that are only referenced are free in that fragment.

A Schema fragment is processed in an environment. That environment extends beyond the fragment to include
other schemata and the SOX definition itself. This document defines how the environment of a fragment is
defined, but does not discuss how it is physically constructed.

A Schema fragment cannot be successfully processed unless all the names that are free in it are bound some-
where in its environment. It is an error for a name to be bound twice in a fragment’s environment.

A fragment specifies its environment by providing bindings for all the free names it contains. There are four
pieces to its environment that a fragment must specify:

1. The fragment itself. This includes those names defined in the fragment. The fragment specifies this by its
own existence.

2. The rest of the Schema this fragment is defined in. This is specified by the uri attribute on the schema ele-
ment.

3. Those schemata referenced directly or indirectly from this fragment, as explained below. These are specified
in the namespace declaration element.

4. The SOX definition. This includes all names defined in this specification or its successors. The version is
specified by the version attribute of the schema element.

Names are either qualified or unqualified. Unqualified names must be defined either in the current fragment, in
the rest of the schema, or in the SOX definition. It can only be defined in one of the three. Qualified names must
be defined in the schema declared for that name with a namespace declaration. For each qualified name in a
fragment there must be a corresponding namespace declaration in the same fragment. The schema element
itself is considered a namespace declaration for the current namespace, so qualified names using the value in the
prefix attribute of the schema element must resolve to the current schema (although not necessarily in the
same fragment). In this version of the language it is an error to create a definition whose local name is either one
of the intrinsic datatypes.

5 Namespace declarations
<!ELEMENT namespace (explain?)>
<!ATTLIST namespace
 prefix NMTOKEN #REQUIRED
 namespace CDATA #REQUIRED >
6

Namespace declarations
All of the names defined in a single Schema belong to the same namespace, and can be used without qualifier.
Schemata, however, frequently need to refer to definitions in other namespaces. A namespace declaration allows
access to definitions in the referenced schema when appearing with an appropriate prefix attribute. A namespace
declaration is scoped to the current schema fragment only. Namespace declarations made in one schema frag-
ment are not visible in other fragments belonging to the same schema, even when referenced through a join.

NOTE We will use a prefix attribute for the prefix, instead of using colonized names, in accordance
with the XSDL spec. The prefix attribute shows up on various elements, including attdef,
scalar, and extends, all of which include a reference to a definition.

XML requires the use of qualified names to make such references in document instances. A qualified name in an
instance consists of two parts separated by a colon:

• A prefix, which is the value of a prefix attribute specified in a namespace declaration.

• A local name, which corresponds to some name defined in the target namespace.

SOX implements qualified names through the use of two attributes, one for the name, and one for the prefix.
Qualified names can be used wherever a reference to a definition is allowed - a schema cannot define a name in
another schema, but it can extend an elementtype from another schema, or use a datatype from another Schema.

For example, the following fragment declares the urn:foo namespace and associates it with prefix bar:

<namespace prefix = “bar” namespace = “urn:foo”/>

If we later need to include a foobar element from the urn:foo namespace in an element type that would be done
using the following fragment:

<elementtype name = “et”>
 <model>
 <element prefix = “bar” type = “foobar” name = “whatever”/>
 <element prefix = “bar” type = “foobar”/>
 </model>
</elementtype>

A valid instance of this would be:

<et><whatever><bar:foobar xmlns:bar=”urn:foo”/></whatever>
 <bar:foobar xmlns:bar=”urn:foo”/></et>

5.1 Validity issues

Each prefix must be unique within a schema fragment. While it is not a fatal error to declare a non-existent
namespace, it is a fatal error to reference an element in a non-existent namespace, or to reference a non-existent
element in an existing namespace. Both of these are semantic errors. It is a fatal runtime error if the processor is
7

unable to retrieve a definition during processing. A processor should distinguish among these cases. This speci-
fication does not address the issue of how to retrieve definitions.

The value of the namespace attribute of the namespace declaration must be the URI of a schema, as described
above. In other words, it must be the same as the value appearing in the uri attribute of the schema element of
files which define that schema.

6 Explain element
The explain element exists inside several different SOX constructs. It provides a hook for including docu-
mentation within a schema and exploits commonly known HTML constructs.

<!ELEMENT explain (title?, synopsis?, (%html.block;)+) >

The title and html.block elements are common HTML constructs whose exact definitions are specified in
the htmltext.ent file included at the end of this document. The synopsis is used to give a purpose or
synopsis to the thing being explained. It is a single paragraph of text.

6.1 Validity constraint

Because it is HTML embedded in XML, all the HTML constructs must be used in a well-formed manner. It is
common to take advantage of SGML tag minimization in writing HTML documents, but that would result in
well-formedness errors in a SOX schema.

7 Element type definitions
In XML Schema documents, element type definitions reproduce the expressiveness of XML element type decla-
rations using explicit element and attribute markup. An element type may be defined by using the element-
type element with the required name attribute, and a subordinate modelor extends element (both of which
will be described subsequently).

The corresponding DTD fragment is:

<!ELEMENT elementtype
 (explain?, (extends | ((empty|model), (attdef)*)))>
<!ATTLIST elementtype
 name NMTOKEN #REQUIRED >

The following example defines an element type of name inline:
8

Element type definitions
<elementtype name="inline">
 <explain>
 <synopsis>This defines the inline element</synopsis>
 </explain>
 <model>
 <string/>
 </model>
</elementtype>

A mechanism for attaching attributes to an element type is described later.

7.0.1 Valid instance

A valid instance for this fragment would be:

<inline>This is a string</inline>

7.1 Element type name

The name of an element type may be any valid unqualified XML element type name corresponding to the Name
production in the XML 1.0 language definition. The name must be unique among the names of element types and
datatypes defined in the current Schema, which includes the current document or other documents belonging to
the same Schema processed through the join mechanism or other resolution mechanism.

An element type may be referenced by the element and extends elements.

It is a fatal error to re-assign an element name, or to reference an element type which is not defined.

The value of the name attribute must be unique across all elementtype names defined in this schema.

7.2 Content model

The content model of an element type defines the structure and composition of an element of that type in an
XML instance. The definition of a content model in XML Schema documents extends the expressiveness of
XML DTDs by providing greater specificity of the minimum and maximum number of times some content
model atom may be repeated. This allows an XML Schema designer with more precise control than is offered by
XML’s *, ? and + occurrence indicators.

The DTD fragment corresponding to an content model definition is:

<!ELEMENT model
 (string|element|choice|sequence)>
9

7.2.1 Empty content specification

An empty atom is used to indicate that an element may not contain any content, as in the case of the BR element
below:

<elementtype name="BR">
 <empty/>
</elementtype>

In order to properly support extensibility (explained below) an empty content model is considered to be an
empty sequence.

Valid instances are:

or:

</BR>

7.2.2 String content model atom

The string atom indicates that a content model is simply string content and is an evolution of #PCDATA. It
can be used as in the example above. In addition, the string value may be constrained to be of a particular
datatype defined by the optional datatype attribute (and prefix, if the datatype is in another schema) as can
be seen in the DTD fragment:

<!ELEMENT string
 EMPTY>
<!ATTLIST string

 prefix NMTOKEN #IMPLIED
 datatype NMTOKEN "string" >

Any element type with string in its content model is considered to be a choice group with an occurs value
of “*”. This is consistent with the XML 1.0 spec which requires that any content model containing #PCDATA be
in a choice with a Kleene star. It is unclear if this restriction will be maintained in the Schema world.

In the example below, the size element type’s content model is string content constrained to be an int:

<elementtype name="size">
 <model>
 <string datatype="int" />
 </model>
</elementtype>

A valid example of this would be:
10

Element type definitions
<size>12345</size>

However the following would not be valid:

<size>12r34</size>

7.2.3 Element content model atom

A content model may also comprise zero or more repetitions of another element. The DTD fragment for this def-
inition is:

<!ELEMENT element
 EMPTY>
<!ATTLIST element

 prefix NMTOKEN #IMPLIED
 type NMTOKEN #REQUIRED
 name NMTOKEN #IMPLIED
 occurs CDATA #IMPLIED >

The defined element is an instance of either a previously defined datatype or element type, which is refered to
by the requiredtype attribute. As before, it is a fatal error to reference a datatype or element type that is not
defined.

For purposes of extensibility, a content model with just one element is considered a sequence of length one.

The name attribute may be used to assign a name to the defined element when it appears in an instance. As
datatypes are not also element types, the name attribute must have a value when type references a datatype.
When name is specified, this shows up as an additional element wrapping an element of the referenced type.

The following fragment demonstrates the use of name. The type int refers to the built-in integer datatype:

<elementtype name = “paragraph”>
 <model>
 <string/>
 </model>
</elementtype>

<elementtype name = “block”>
 <model>
 <sequence>
 <element name = “p” type = “paragraph”/>
 <element name = “position” type = “int”/>
 </sequence>
 </model>
</elementtype>
11

A valid instance would look like this:

<block><p><paragraph>this is the paragraph</paragraph></p><position>12345</
position></block>

The following would not be valid:

<block><paragraph>you must use the name</paragraph><int>1</int></block>

The occurs attribute indicates the number of repetitions of the instanced element. It can take on the values
of:

• one of the Kleene operators, “*” (0 or more repetitions), “?” (0 or 1 repetitions) or “+” (1 or more repeti-
tions)

• a value of the form “N1,N2” (a value between a minimum of N1 and a maximum of N2 occurrences) where
N1 and N2 are non-negative integers (N1 <= N2)

• a value of the form “N1,*” where N1 is a non-negative integer. This indicates at least N1 occurrences but no
upper maximum

We will call an occurs where N1 is not equal to N2 an indefinite occurs. The degenerate case of “0,0” is allowed
and means exactly 0 repetitions, which is treated the same as if the declaration did not occur.

NOTE Values of the form “N1,N2” and “N1,*” are not currently supported. They will be treated as
an occurs of “+” if N1 is greater than 0, or as a “*” otherwise.

In the following example, the definition of the content model for a list element type specifies that it contains a
minimum of 2 and a maximum of 9 item elements.

<elementtype name="list">
 <model>
 <element type = "item" occurs="2,9"/>
 </model>
</elementtype>

A valid instance of the above would be:

<list><item/><item/></list>

7.2.4 Choice content model atom

The choice atom defines a content model to comprise one of a set of choices of element, choice or
sequence content models. The relevant DTD fragment is:

<!ELEMENT choice
12

Element type definitions
 ((element|choice|sequence),
 (element|choice|sequence)+) >
<!ATTLIST choice
 name NMTOKEN #IMPLIED
 occurs CDATA #IMPLIED >

As with element, the occurs attribute specifies the number of repetitions, and it can take the same values as
defined earlier.

In the following example, the dl element type’s content model specifies that either a single dt or a single dd
element is allowed.

<elementtype name="dl">
 <model>
 <choice>
 <element type="dt"/>
 <element type="dd"/>
 </choice>
 </model>
</elementtype>

A valid instance would be:

<dl><dt/></dl>

or

<dl><dd/></dl>

but not:

<dl><dd/><dt/></dl>

7.2.5 Sequence content model atom

The sequence atom defines a content model to consist of the specified element, choice or sequence con-
tent models appended together in the order specified. The relevant DTD fragment is:

<!ELEMENT sequence
 ((element|choice|sequence),
 (element|choice|sequence)+) >
<!ATTLIST sequence
 name NMTOKEN #IMPLIED
 occurs CDATA #IMPLIED >
13

As before the occurs attribute specifies the number of repetitions of the entire sequence, and it can take the
same values as defined earlier.

In the following example, the dl element type’s content model specifies that a single dt followed by a single dd
is allowed.

<elementtype name="dl">
 <model>
 <sequence>
 <element type="dt"/>
 <element type="dd"/>
 </sequence>
 </model>
</elementtype>

A valid instance would be:

<dl><dt/><dd/></dl>

7.2.6 Combining content model atoms

The various content model atoms defined above may be combined to allow the definition of complex content
models.

For example, the dl element type’s content model below specifies that a dh is followed by two or more dt or dd
elements.

<elementtype name="dl">
 <model>
 <sequence>
 <element type="dh"/>
 <choice occurs="2,*">
 <element type="dt"/>
 <element type="dd"/>
 </choice>
 </sequence>
 </model>
</elementtype>

A valid instance would be:

<dl><dh/><dt/><dd/><dd/><dt/></dl>
14

Elementtype inheritance
7.3 Validity Issues

The occurs attribute may not occur on the outermost sequence or choice in an elementtype definition.
This is the sequence or choice immediately contained within model. The outermost sequence or
choice within the model must occur exactly once.

The value of the name attribute (if any) given to an element, choice, or sequence, must be unique within the
innermost enclosing construct. For example, the following is legal:

<sequence>
 <element name = “a” type = “string”/>
 <element name = “b” type = “int”/>
</sequence>

while the following is not:

<sequence>
 <element name = “a” type = “string”/>
 <element name = “a” type = “int”/>
</sequence>

Likewise, the following is valid:

<sequence>
 <element name = “a” type = “string”/>
 <sequence name = “c”>
 <element name = “a” type = “string”/>
 <element name = “c“ type = “int”/>
 </sequence>
 <element name = “b” type = “string”/>
</sequence>

8 Elementtype inheritance
As in object-oriented inheritance, an element may specialize (or subclass) from another element by inheriting its
structure and then adding on to its content model. Inheritance is specified using the extends construct, and the
relevant DTD fragment is:

<!ELEMENT extends (append?, attdef*)>
<!ATTLIST extends
 prefix NMTOKEN #IMPLIED
 type NMTOKEN #REQUIRED >
<!ELEMENT append
 (element|choice|sequence)+>
15

The type attribute refers to the base element type that is being extended, and the structure of the append atom
has the same contents as that of model. The base type must be already defined. The contents of the append
element are added to the end of the parent’s content model (the outermost sequence). Note that the append
element has been made optional. This makes it possible to declare semantically distinct element types whose
structures remain the same as that of some common parent.

In the following example, the element type datednote has the content model of the element type it extends
(note) with an appended date (using the intrinsic date datatype). The multinote element type polymorphyi-
cally can use either..

<elementtype name="note">
 <model><element type = “p” occurs = “+”></model>
</elementtype>

<elementtype name="datednote">
 <extends type="note">
 <append>
 <element type="date" name = “adate”>
 <element type=”time” name = “atime” occurs = “?”/>
 </append>
 </extends>
</elementtype>

<elementtype name = “multinote”>
 <element type = “note” occurs = “+”/>
</elementtype>

The following is a valid instance of multinote:

<multinote><note><p>This is a plain note</p></note><datednote><p>This is a
dated note</p><adate>19981209</adate><atime>10:23:32</atime></datednote></
multinote>

8.1 Interaction of namespaces and extension in document instances

SOX permits an elementtype in one namespace to extend an elementtype in another Schema. In order to work
correctly with the current draft of the W3C Namespace Recommendation, each element in an instance belongs to
the namespace in which it was declared. In the above example, if note were declared in schema Foo.sox and
both datednote and multinote in Bar.sox, then the following would be an appropriately prefixed ver-
sion of the above example:
16

Elementtype inheritance
<bar:multinote xmlns:foo=”Foo.sox” xmlns:bar=”Bar.sox”>
<foo:note><foo:p>This is a plain note</foo:p></foo:note>
<bar:datednote><foo:p>This is a dated note</foo:p>
<bar:adate>19981209</bar:adate><bar:atime>10:23:32</bar:atime>
</bar:datednote></bar:multinote>

A prefered solution would be to consider local names as being in the namespace of the elementtype they are
declared in (or its subtypes) and therefore need not be prefixed. This would be similar to the treatment of
attributes.

8.2 Validity issues

In order to support extensibility, each elementtype must be either a choice or a sequence. By default:

1. an empty elementtype is considered to be an empty sequence.

2. An elementtype with a model of just element is considered to be a sequence.

3. An elementtype with a model of string is considered to be a choice.

There are some constraints placed on the form of content models to avoid ambiguous models and interminable
documents. These are an extension of similar restriction in XML 1.0.

For any possible path in the parse tree from an element to a descendant of itself there must be an intervening
optional node (?, *, or indefinite occurs) or intevening choice node with at least two children. This assures that
infinite documents are not required.

For any optional node in the parse tree (?, *, +, indefinite occurs, or choice), none of the descendants of elements
in its first set may be in its follow set.

These conditions continue to hold when extending an elementtype.

Due to the desire to maintain substitutability of extended elementtypes with their base type, SOX 2.0 does not
allow the extension of elementtypes whose content model is choice. In order to maintain substitutability, any
element extending a choice would need to be a subtype of something already in the choice, so it would already be
valid in the parent type.

When extending a sequence with a occurs of indefinite extent, the resulting content model must be checked for
ambiguity with itself. In other words, if the parent model was x*, where x is some content model, then the con-
tent model xx (x followed immediately by x) must have been unambiguous. If the child model is now x+e (i.e., x
plus some additional element), then the content model (x+e)(x+e) must still be unambiguous.

Within an element, the value of the name attribute is scoped to the surrounding elementtype. It neither
creates nor prevents the creation of a top level definition using the same name. However, in order to maintain
17

backwards compatibility with XML 1.0, the binding between name and type must be global. In other words,
once a name has been used with a particular type, it cannot be used with another type. We expect this restriction
to be relaxed in a future version.

9 Datatypes

Along the lines of being able to define element types, XML Schema provides the means to define and refer to
datatypes. XML Schema defines a set of intrinsic datatypes, listed below, from which user-defined datatypes
may be derived. Some of these have been refered to elsewhere in this document. It also (currently) provides the
datatype element for actually defining new datatypes. The appropriate DTD fragment is:

<!ELEMENT datatype
 (explain?, (enumeration|scalar|varchar)) >
<!ATTLIST datatype
 name NMTOKEN #REQUIRED >

The value of the name attribute specifies the name of the new datatype. This must be unique across all the
datatypes defined for this schema. The three operators, enumeration, scalar, and varchar (all further
described below), each derive a new datatype from an existing datatype. The existing datatype can be either one
of the intrisic types, or some other user-defined datatype, whether in this schema or another. Both scalar and
varchar have some restrictions on which datatypes they can extend, as described below.

9.1 Intrinsic datatypes

The intrinsic datatypes define the domains of the atomic data units in XML Schema documents. The list below
includes those datatypes defined intrinsic to this version of the Schema language.

boolean

A value of either “true” or “false”

string

A sequence of characters.

Format: X*

URI

A sequence of characters forming a valid URI:

number
18

Datatypes
An infinite precision number.

Format: [+-][0-9]*[‘.’[0-9]*]?

float

A single precision floating point number in the range -3.40282347 * 10E38 to 3.40282347 * 10E38

Format: [+-][0-9]*[’.’[0-9]*]?

double

A double precision floating point number in the range -1.17549435 * 10E308 to 1.17549435 * 10E308

Format: [+-][0-9]*[’.’?[0-9]*]?

int

An integer in the range -2,147,483,648 to 2,147,483,647

Format: [+-]?[0-9]*

long

An integer in the range -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Format: [+-]?[0-9]*

byte

An integer in the range -128 to 127

Format: [+-]?[0-9]*

ID

An ID is a name which must be unique within the instance and names the node for which it is defined. The
value of an ID cannot be reused within the instance.

Format: NMTOKEN production of XML 1.0 specification.

IDREF

An IDREF must contain the value of an ID string declared elsewhere in the document.

IDREFS

A list of whitespace delimited IDREF values.

NMTOKEN

A string corresponding to the values of the NMTOKEN production of the XML 1.0 specification.

NMTOKENS
19

A list of whitespace delimited NMTOKEN values.

date

A date including month, day, and year

Format: YYYYMMDD

time

A time accurate to the nearest second with optional offset from GMT

Format: HH:MM:SS[[+-]HH:MM]?

datetime

A combination Date and Time. Note the presence of a “T” character between the date and time portions,
and the use of colons to separate hours, minutes, and seconds. These are as per ISO 8601.

Format: YYYYMMDDTHH:MM:SS[[+-]HH:MM]? (the first MM is Months, the other two are minutes)

9.2 Enumeration datatypes

XML Schema documents provide a mechanism for defining enumerations to constrain attribute or element string
content. An enumeration datatype is a finite set of values enumerated by the option elements inside the
enumeration element.

<!ELEMENT enumeration
 (explain?, option)+ >
<!ATTLIST enumeration
 prefix NMTOKEN #IMPLIED
 datatype NMTOKEN #REQUIRED >

<!ELEMENT option (#PCDATA)* >

The datatype attribute of the enumeration specifies the instrinsic (see list above) or user-defined datatype
(i.e., other enumeration, varchar, or scalar) being refined. If the datatype is not defined in this Schema,
then the prefix of the appropriate schema must be specified.

Each option has a value representing a valid value for the datatype being extended.

The following example demonstrates the definition and use of an enumeration datatype:

<datatype name="colortype">
 <enumeration datatype="NMTOKEN">
 <option>Red</option>
 <option>Blue</option>
 <option>Green</option>
20

Datatypes
 </enumeration>
</datatype>

<elementtype name="car">
 <empty/>
 <attdef name="color" datatype="colortype"><required/></attdef>
</elementtype>

<elementtype name="bus">
 <model>
 <element name="color" type="colortype">
 </model>
</elementtype>

The following are valid instances:

<car color="Red"/>

<bus><color>Blue</color></bus>

9.3 Scalar datatypes

Scalar datatypes are used for creating subtypes of number. The relevant DTD fragment is:

<!ELEMENT scalar EMPTY >
<!ATTLIST scalar
 prefix NMTOKEN #IMPLIED
 datatype NMTOKEN "number"
 digits CDATA #IMPLIED
 decimals CDATA #IMPLIED
 minvalue CDATA #IMPLIED
 maxvalue CDATA #IMPLIED
 minexclusive (true | false) "false"
 maxexclusive (true | false) “false" >

Digits specifies the maximum number of digits for the integral part of the number, decimals specifies the
maximum number of digits for the fraction part of the number. The following constraints must hold:

• If the datatype is a subtype of int, long, or byte, then decimals must be unspecified or 0.

• Minvalue specifies the low end of the range of possible values. Maxvalue specifies the high end. Min-
value must be less than or equal to maxvalue.

• If minvalue (respectively, maxvalue) is unspecified, then it is either the minimum (resp. maximum) pos-
sible value given the specified values of digits and decimals, or it is the value specified by the parent datatype
21

Both minvalue and maxvalue must be specifiable with the given values for digits and decimals, or
must be expressible as proper values for the parent class.

• Minexclusive and maxexclusive determine whether the minimum number, respectively largest num-
ber, in the range is included.

• The values for digits and decimals must be non-negative integers. Both must be less than or equal to
the values specified (if any) for the parent class.

• The value of the datatype must be either one of the intrinsic scalar datatypes (byte, long, int, float,
double, number), or of a scalar datatype derived from one of these intrinsics.

An example scalar would be:

<scalar digits = “4” decimals = “3” minvalue = “-9999” maxvalue = “8888”
 minexclusive=”true”/>

The following are valid: -9998.999, 8887.999, 0.0, 8888.

The following are invalid: -9999, 8888.001.

The number datatype covers all rational numbers which can be finitely specified as a decimal (i.e., it does not
cover infinitely repeating decimals, such as 1/9, or irrational reals, such as π). The other intrinsic classes are
designed to be easily mappable to existing datatypes in common programming languages.

9.4 Varchar types

Varchar, adapted from SQL, is for specifying string types with fixed maximum length.

<!ELEMENT varchar EMPTY>
<!ATTLIST varchar
 prefix NMTOKEN #IMPLIED
 datatype NMTOKEN "string"

 maxlength CDATA #REQUIRED>

The value of maxlength must be a non-negative integer.

An example varchar use is:

<datatype name = “var”>
 <varchar maxlength = “4”/>
</datatype>
<elementtype name = “wrap”>
 <model>
 <string datatype = “var”/>
22

Attribute definitions
 </model>
</elementtype>

A valid instance would be:

<wrap>abc</wrap>

as would:

<wrap>abcd</wrap>

An invalid instance would be:

<wrap>abcde</wrap>

9.5 Validity issues

Float, double, int, long, and byte are all predefined scalar types. This means they can be used as base
types for any new definition of a scalar and can be referenced as datatypes. The value of maxlength in var-
char must be greater than or equal to 0. Note that a length of 0 implies an empty string. The datatype of a var-
char must be either another varchar or one of string, NMTOKEN, NMTOKENS, ID, IDREF, or IDREFS .

The names of the intrinsic types are reserved by SOX. It is an error to define a datatype or elementtype using the
name of one of the intrinsic types.

10 Attribute definitions
Attribute definitions in XML Schema documents may be defined as part of the element type definition. An
attribute definition has a name and a type, and must include a presence element. The relevant fragment of the
DTD is:

<!ELEMENT attdef
 (explain?, (enumeration | scalar | varchar)?,

 (required|implied|default|fixed)?)>
<!ATTLIST attdef
 name NMTOKEN #REQUIRED
 prefix NMTOKEN #IMPLIED
 datatype NMTOKEN #IMPLIED>

The name of the attribute is defined by the value of name, and it may be of a certain datatype. It must be
unique among the attributes for this elementtype. If a value is not given for the datatype attribute and the
attdef does not contain an enumeration, scalar, or varchar, then a datatype of string is assumed.
23

An attribute value’s presence in an instance may be specified as default, fixed, required or implied,
as in the XML specification. If no value is given for the presence, then it defaults to implied. In all cases, the
value of an attribute must be valid for its datatype. The DTD fragment for the presence elements is:

<!ELEMENT default
 (#PCDATA) >
<!ELEMENT fixed
 (#PCDATA) >
<!ELEMENT required
 EMPTY >
<!ELEMENT implied
 EMPTY >

A default presence indicates that the value of the attribute is automatically set to the default value if none is
specified. In an instance, if the attribute is defined to have another value, the default is ignored.

A fixed presence indicates that the value of the attribute is assumed to be the fixed value if no value is speci-
fied. The attribute may also be explicitly assigned exactly this fixed value. In an instance, if the attribute is
defined to have a different value, this signals a fatal error.

An empty value can be specified for default or fixed.

A required presence indicates that in an instance, whenever the parent element appears, this attribute must be
assigned a value.

And finally, an implied presence indicates that this attribute is entirely optional and no default value is speci-
fied for the case where it is not present.

In XML Schema documents, unlike XML DTDs, enumerations may be specified for any attribute type. This
information will be lost if an XML DTD is generated from an XML Schema document, except for attributes of
type NMTOKEN, indicating a name token. If there is an enumeration specified for an attribute and also a
fixed or default value, then that fixed or default value must be a member of the enumeration.

Thus, example attribute definitions (within the definition of an elementtype, of course) might be:

<elementtype name="car">
 <empty/>
 <attdef name = “owner” datatype = “string”/>
 <attdef name="color">
 <enumeration datatype="NMTOKEN">
 <option>Red</option>
 <option>Blue</option>
24

Including schema files
 <option>Green</option>
 </enumeration>
 <required/>
 </attdef>
</elementtype>

An instance corresponding to this definition would look like:

<car color="Blue" owner = “John Smith”/>

10.1 Validity constraints

It is a fatal error for the datatype attribute of the attdef element to have a value if there is an enclosed
enumeration, scalar, or varchar.

11 Including schema files
An externally-defined schema file whose definitions belong to the same namespace may be pulled in and parsed
with the current schema definition. This is accomplished using the join construct. The relevant fragment of
the DTD is:

<!ELEMENT join
 (explain?)>
<!ATTLIST join
 datatype NMTOKEN #FIXED "schema"
 public CDATA #IMPLIED
 system CDATA #REQUIRED>

The datatype attribute is fixed as only schemas may be included for now. The public attribute is the public
identifier of the file as defined in the XML 1.0 specification. The system attribute is the URI of the file con-
taining the schema definition to be lexically included. The entity manager must resolve this URI.

A joined file is read only once by the parser. The parser determines identity between files by comparison of
the values of the system attribute. It is not illegal for two join elements to reference the same URI, but one
will be ignored. It is a user error to use two different URIs which ultimately map to the same file. Note that
reading a fragment twice will cause an error as the schema processor will create all its definitions twice.

11.1 Validity issue

The joined file must belong to the same namespace as the joining one, as identified by the URI attribute of the
root elements.
25

In the current implementation, both namespace and join elements use URIs to point to external files, and
processing a namespace involves retrieving the physical file referenced by the namespace element. It is not an
error for a join element to reference this file again, however it is a runtime error for that file to actually be
retrieved a second time. In other words, no fragment for a schema is to be processed more than once.

12 SOX DTD
<!-- *** -->
<!-- SOX DTD -->
<!-- PUBLIC "-//Commerce One Inc.//DTD SOX 2.0//EN" -->
<!-- SYSTEM "schema.dtd" -->

<!-- Copyright: Commerce One Inc., 1997, 1998, 1999

 Date created: 17 Dec 1997
 Date revised: 03 June 1999
 Version: 2.0
-->

<!-- *** -->

<!-- *** -->
<!-- Schema for Object Oriented XML
 *** -->
<!-- *** -->

<!ENTITY % htmltext SYSTEM "htmltext.ent">
%htmltext;

<!ELEMENT schema (intro?, (datatype | elementtype |
 join | comment | namespace)*) >
<!ATTLIST schema
 prefix NMTOKEN #IMPLIED

 uri CDATA #REQUIRED
 soxlang-version NMTOKEN #FIXED “V0.2.2”>

<!-- *** -->
<!-- ELEMENTS *** -->
<!-- *** -->
26

SOX DTD
<!-- An Element Type definition requires a name.
 It is defined to extend a named element,
 as an instance of a named element,
 as an EMPTY or ANY element with optional attribute definitions,
 or with a content model with optional attribute definitions. -->

<!ELEMENT elementtype
 (explain?, (extends | ((empty|model), (attdef)*)))>
<!ATTLIST elementtype
 name NMTOKEN #REQUIRED >

<!ELEMENT empty EMPTY >

<!-- *** -->
<!-- MODEL ** -->
<!-- *** -->

<!ELEMENT model
 (string|element|choice|sequence)>

<!ELEMENT extends (append?, attdef*)>
<!ATTLIST extends
 prefix NMTOKEN #IMPLIED
 type NMTOKEN #REQUIRED >

<!ELEMENT append

 (element|choice|sequence)+>

<!ELEMENT element EMPTY >
<!ATTLIST element
 prefix NMTOKEN #IMPLIED

 type NMTOKEN #REQUIRED
 name NMTOKEN #IMPLIED

 occurs CDATA #IMPLIED >

<!ELEMENT string EMPTY >
<!ATTLIST string
 prefix NMTOKEN #IMPLIED
 datatype NMTOKEN "string" >

<!ELEMENT choice
 ((element|choice|sequence),
27

 (element|choice|sequence)+) >
<!ATTLIST choice
 name NMTOKEN #IMPLIED
 occurs CDATA #IMPLIED >

<!ELEMENT sequence
 ((element|choice|sequence),
 (element|choice|sequence)+) >
<!ATTLIST sequence
 name NMTOKEN #IMPLIED
 occurs CDATA #IMPLIED >

<!-- replacement for "include" -->
<!ELEMENT join
 (explain?)>
<!ATTLIST join
 datatype NMTOKEN #FIXED "schema"
 public CDATA #IMPLIED
 system CDATA #REQUIRED>

<!-- *** -->
<!-- ATTRIBUTES *** -->
<!-- *** -->

<!-- An attribute definition has a name and datatype, and must have
 a presence element "required|implied|default|fixed" included.
 It may have a namespace associated with it, or inherit
 enumeration is supposed to define the domain of acceptable valu
 -->

<!ELEMENT attdef
 (explain?, (enumeration | scalar | varchar)?,

 (required|implied|default|fixed)?)>
<!ATTLIST attdef
 name NMTOKEN #REQUIRED
 prefix NMTOKEN #IMPLIED
 datatype NMTOKEN #IMPLIED>

<!ELEMENT default
 (#PCDATA) >
<!ELEMENT fixed
 (#PCDATA) >
28

SOX DTD
<!ELEMENT required
 EMPTY >
<!ELEMENT implied
 EMPTY >

<!-- *** -->
<!-- DATATYPE *** -->
<!-- *** -->
<!ELEMENT datatype
 (explain?, (enumeration|scalar|varchar)) >
<!ATTLIST datatype
 name NMTOKEN #REQUIRED >

<!ELEMENT enumeration
 (explain?, option)+ >
<!ATTLIST enumeration
 prefix NMTOKEN #IMPLIED
 datatype NMTOKEN #REQUIRED >

<!ELEMENT option (#PCDATA)* >

<!ELEMENT scalar EMPTY >
<!ATTLIST scalar
 prefix NMTOKEN #IMPLIED
 datatype NMTOKEN "number"
 digits CDATA #IMPLIED
 decimals CDATA #IMPLIED
 minvalue CDATA #IMPLIED
 maxvalue CDATA #IMPLIED
 minexclusive (true | false) "false"
 maxexclusive (true | false) "false" >

<!ELEMENT varchar EMPTY>
<!ATTLIST varchar
 prefix NMTOKEN #IMPLIED
 datatype NMTOKEN "string"

 maxlength CDATA #REQUIRED>

<!-- *** -->
<!-- COMMENT ** -->
<!-- *** -->
29

<!ELEMENT comment
 (#PCDATA)>

<!-- Namespaces -->
<!ELEMENT namespace (explain?) >
<!ATTLIST namespace
 prefix NMTOKEN #REQUIRED
 namespace CDATA #REQUIRED >

13 Appendix B: htmltext.ent - HTML element types for explain
<!-- *** -->
<!-- HTML Text: SOX uses HTML element types for convenience. -->
<!-- *** -->
<!-- Copyright: Commerce One Systems Inc., 1997, 1998
 Date created: 17 Dec 1997
 Date revised: 01 Mar 1999
 Version: 1.0 -->
<!-- *** -->

<!ENTITY % html.nonheading " table | p | bq | pre | ol | ul | dl" >

<!ENTITY % html.text "#PCDATA| a | abbr | b | big | br
| cite | code | em | i | img
| q | small | span | strike | strong
| sub | sup | tt | u " >

<!ENTITY % html.heading.text "#PCDATA| a | abbr | b | big | br | cite |
code | em
| i | img | q | small | span | strike | strong | sub | sup | tt | u " >

<!ENTITY % html.block "h1|h2|h3|h4|h5|h6|%html.nonheading;" >

<!-- *** -->
<!-- The intro element type is used to introduce a schema. It contains a
 general description of the purpose and use of the schema’s document
 type or components. -->
30

Appendix B: htmltext.ent - HTML element types for explain
<!ELEMENT intro ((%html.block;)+) >

<!-- The explain element is use to document a component within a schema. -->
<!ELEMENT explain (title?, synopsis?, (%html.block;)+) >

<!-- The title is used to give a human readable title to some type name. -->
<!ELEMENT title (%html.text;)* >

<!-- The synopsis is used to give a purpose or synopsis to the thing being
 explained. It is a single paragraph of text. -->
<!ELEMENT synopsis (%html.text;)* >

<!-- *** -->
<!ELEMENT h1 (%html.heading.text;)* >
<!ELEMENT h2 (%html.heading.text;)* >
<!ELEMENT h3 (%html.heading.text;)* >
<!ELEMENT h4 (%html.heading.text;)* >
<!ELEMENT h5 (%html.heading.text;)* >
<!ELEMENT h6 (%html.heading.text;)* >

<!-- *** -->
<!ELEMENT b (#PCDATA)* >
<!ELEMENT br EMPTY >
<!ELEMENT big (#PCDATA)* >
<!ELEMENT i (#PCDATA)* >
<!ELEMENT small
 (#PCDATA)* >
<!ELEMENT sub (#PCDATA)* >
<!ELEMENT sup (#PCDATA)* >
<!ELEMENT strike
 (#PCDATA)* >
<!ELEMENT tt (#PCDATA)* >
<!ELEMENT u (#PCDATA)* >

<!ELEMENT abbr (#PCDATA)* >
<!ELEMENT cite (#PCDATA)* >
<!ELEMENT code (#PCDATA)* >
<!ELEMENT em (#PCDATA)* >
<!ELEMENT q (#PCDATA)* >
<!ELEMENT span (#PCDATA)* >
<!ELEMENT strong
 (#PCDATA)* >
31

<!-- *** -->
<!ELEMENT a (%html.text;)* >
<!ATTLIST a
 name CDATA #IMPLIED
 href CDATA #IMPLIED
 title CDATA #IMPLIED >

<!-- *** -->
<!ELEMENT img (explain?) >
<!ATTLIST img
 src CDATA #REQUIRED
 alt CDATA #REQUIRED
 longdesc CDATA #IMPLIED
 usemap CDATA #IMPLIED >

<!-- *** -->
<!ELEMENT pre (%html.text;)* >
<!ATTLIST pre
 xml:space (preserve) #REQUIRED >

<!-- *** -->
<!ELEMENT p (%html.text;)* >
<!ELEMENT bq (%html.text;)* >

<!ELEMENT ol (lh?, li+) >
<!ELEMENT ul (lh?, li+) >
<!ELEMENT lh (%html.heading.text;)* >
<!ELEMENT li (%html.text;|%html.block;)* >

<!ELEMENT dl (dh?,(dt,dd)+) >
<!ELEMENT dh (%html.heading.text;)* >
<!ELEMENT dt (%html.text;|%html.block;)* >
<!ELEMENT dd (%html.text;|%html.block;)* >

<!-- *** -->
<!ELEMENT table
 (thead?, tbody) >
<!ATTLIST table
 cols CDATA #IMPLIED
 width CDATA #IMPLIED
 height CDATA #IMPLIED
32

Appendix B: htmltext.ent - HTML element types for explain
 align (left|center|right|justify) #IMPLIED
 valign (top | middle | bottom | baseline) #IMPLIED
 vspace CDATA #IMPLIED
 hspace CDATA #IMPLIED
 cellpadding CDATA #IMPLIED
 cellspacing CDATA #IMPLIED
 border CDATA #IMPLIED
 frame (box|void|above|below|hsides|vsides|lhs|rhs)
#IMPLIED
 rules (none|groups|rows|cols|all) #IMPLIED >

<!ELEMENT thead
 (tr)+ >
<!ATTLIST thead
 align (left|center|right|justify) #IMPLIED
 valign (top|middle|bottom|baseline) #IMPLIED >

<!ELEMENT tbody
 (tr)+ >
<!ATTLIST tbody
 align (left|center|right|justify) #IMPLIED
 valign (top|middle|bottom|baseline) #IMPLIED >

<!ELEMENT tr (th | td)+ >
<!ATTLIST tr
 align (left|center|right|justify) #IMPLIED
 valign (top | middle | bottom | baseline) #IMPLIED >

<!ELEMENT th (%html.text;|%html.block;)* >
<!ATTLIST th
 colspan CDATA #IMPLIED
 rowspan CDATA #IMPLIED
 width CDATA #IMPLIED
 height CDATA #IMPLIED
 align (left|center|right|justify) #IMPLIED
 valign (top | middle | bottom | baseline) #IMPLIED >

<!ELEMENT td (%html.text;|%html.block;)* >
<!ATTLIST td
 colspan CDATA #IMPLIED
 rowspan CDATA #IMPLIED
 width CDATA #IMPLIED
33

 height CDATA #IMPLIED
 align (left|center|right|justify) #IMPLIED
 valign (top | middle | bottom | baseline) #IMPLIED >

<!-- *** -->
34

	Schema for Object-Oriented XML 2.0
	Status of this document
	1 Abstract
	1. An extensive (and extensible) set of datatypes
	2. Inheritance among element types
	3. Namespaces
	4. Polymorphic content
	5. Embedded documentation
	6. Features to enable robust distributed schema management.
	1. Ensure that the public record accurately reflects the evolution of SOX. Members of the communi...
	2. Expose some of the fruits of our implementation experience to the general community, particula...

	2 Soxtype processing instruction
	3. The PI target, which is soxtype.
	4. The uri specifying a schema to be the default namespace of the instance.

	3 Import processing instruction
	3.1 Validity constraint

	4 Schema definitions
	4.1 Validity issues
	1. The fragment itself. This includes those names defined in the fragment. The fragment specifies...
	2. The rest of the Schema this fragment is defined in. This is specified by the uri attribute on ...
	3. Those schemata referenced directly or indirectly from this fragment, as explained below. These...
	4. The SOX definition. This includes all names defined in this specification or its successors. T...

	5 Namespace declarations
	5.1 Validity issues

	6 Explain element
	6.1 Validity constraint

	7 Element type definitions
	7.0.1 Valid instance
	7.1 Element type name
	7.2 Content model
	7.2.1 Empty content specification
	7.2.2 String content model atom
	7.2.3 Element content model atom
	7.2.4 Choice content model atom
	7.2.5 Sequence content model atom
	7.2.6 Combining content model atoms

	7.3 Validity Issues

	8 Elementtype inheritance
	8.1 Interaction of namespaces and extension in document instances
	8.2 Validity issues
	1. an empty elementtype is considered to be an empty sequence.
	2. An elementtype with a model of just element is considered to be a sequence.
	3. An elementtype with a model of string is considered to be a choice.

	9 Datatypes
	9.1 Intrinsic datatypes
	A value of either “true” or “false”
	A sequence of characters.
	Format: X*
	A sequence of characters forming a valid URI:
	An infinite precision number.
	Format: [+-][0-9]*[‘.’[0-9]*]?
	A single precision floating point number in the range -3.40282347 * 10E38 to 3.40282347 * 10E38
	Format: [+-][0-9]*[’.’[0-9]*]?
	A double precision floating point number in the range -1.17549435 * 10E308 to 1.17549435 * 10E308
	Format: [+-][0-9]*[’.’?[0-9]*]?
	An integer in the range -2,147,483,648 to 2,147,483,647
	Format: [+-]?[0-9]*
	An integer in the range -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
	Format: [+-]?[0-9]*
	An integer in the range -128 to 127
	Format: [+-]?[0-9]*
	An ID is a name which must be unique within the instance and names the node for which it is defin...
	Format: NMTOKEN production of XML 1.0 specification.
	An IDREF must contain the value of an ID string declared elsewhere in the document.
	A list of whitespace delimited IDREF values.
	A string corresponding to the values of the NMTOKEN production of the XML 1.0 specification.
	A list of whitespace delimited NMTOKEN values.
	A date including month, day, and year
	Format: YYYYMMDD
	A time accurate to the nearest second with optional offset from GMT
	Format: HH:MM:SS[[+-]HH:MM]?
	A combination Date and Time. Note the presence of a “T” character between the date and time porti...
	Format: YYYYMMDDTHH:MM:SS[[+-]HH:MM]? (the first MM is Months, the other two are minutes)

	9.2 Enumeration datatypes
	9.3 Scalar datatypes
	9.4 Varchar types
	9.5 Validity issues

	10 Attribute definitions
	10.1 Validity constraints

	11 Including schema files
	11.1 Validity issue

	12 SOX DTD
	13 Appendix B: htmltext.ent - HTML element types for explain

